テクニカルレポート

日本粘土学会参考試料の分析・評価

宮脇律郎 *¹⁾, 佐野貴司¹⁾, 大橋文彦 *²⁾, 鈴木正哉 *³⁾, 小暮敏博 *⁴⁾, 奥村大河⁴⁾, 亀田 純⁴⁾, 梅染卓也⁴⁾, 佐藤 努 *⁵⁾, 千野大輔⁵⁾, 弘山郁織⁵⁾, 山田裕久 *⁶⁾, 田村堅志⁶⁾, 森本和也⁶⁾, 上原誠一郎 *⁷⁾, 八田珠郎 *⁸⁾

* 日本粘土学会標準粘土委員会委員

> ¹⁾国立科学博物館 地学研究部 鉱物科学研究グループ 〒169-0073 東京都新宿区百人町3-23-1

²⁾産業技術総合研究所 サステナブルマテリアル研究部門 物質変換材料研究グループ 〒463-8560 名古屋市守山区下志段味穴ケ洞2266-98

3) 産業技術総合研究所 地圏資源環境研究部門 地圏化学研究グループ 〒305-8567 茨城県つくば市東1-1-1中央第7

4) 東京大学 大学院 理学系研究科 地球惑星科学専攻

〒113-0033 東京都文京区本郷7-3-1

5)北海道大学大学院 工学研究科 環境循環システム専攻 環境地質学研究室 〒060-8628 札幌市北区北13条西8丁目

6)物質・材料研究機構 光触媒材料センター ナノ構造制御グループ 〒305-0044 つくば市並木1-1

> ⁷⁾九州大学大学院 理学研究院 地球惑星科学部門 〒812-8581 福岡市東区箱崎6-10-1 ⁸⁾国際農林水産業研究センター 〒305-8686 つくば市大わし1-1

Some Reference Data for the JCSS Clay Specimens

Ritsuro MIYAWAKI*¹⁾, Takashi SANO¹⁾, Fumihiko OHASHI*²⁾, Masaya SUZUKI*³⁾, Toshihiro KOGURE*⁴⁾, Taiga OKUMURA⁴⁾, Jun KAMEDA⁴⁾, Takuya UMEZOME⁴⁾, Tsutomu SATO*⁵⁾, Daisuke CHINO⁵⁾, Kaori HIROYAMA⁵⁾, Hirohisa YAMADA*⁶⁾, Kenji TAMURA⁶⁾, Kazuya MORIMOTO⁶⁾, Seiichiro UEHARA*⁷⁾ and Tamao HATTA*⁸⁾

* Member of the Reference Clay Committee, the Clay Science Society of Japan

Department of Geology and Paleontology, National Museum of Nature and Science 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan

 $^{\rm 2)}$ Materials Research Institute for Sustainable Development,

National Institute of Advanced Industrial Science and Technology

2266-98, Anagahora, Shimoshidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan

Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and T

³⁾ Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology 1-1-1, Higashi, Tsukuba 305-8567, Japan

⁴⁾ Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

⁵⁾ Laboratory of Environmental Geology, Graduate School of Engineering, Hokkaido University Kita 13 Nishi 8, Kitaku, Sapporo, 060-8628, Japan

⁶⁾ Photocatalytic Materials Center, National Institute for Materials Science.

1-1, Namiki, Tsukuba 305-0044, Japan

Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University 6-10-1 Hakozaki, Higasiku, Fukuoka 812-8581 Japan

8) Japan International Research Center for Agricultural Sciences

1-1, Owashi, Tsukuba 305-8686, Japan

1.はじめに

相互にデータを比較できるような標準粘土試料は,粘土科学の発展のために大変重要な役割を果たす.日本粘土学会では,国内外の粘土研究の活性化やその分析・測定技術の向上などを目的として,要望の高かった7種の粘土鉱物について「参考試料」の頒布を1990年より開始し、20年1種を加えた.各試料は,賛助会員各社のご協力の下で,粉砕・混合して作製された均質試料を約100kg 用意し,希望者に対して100g 単位で頒布している.この参考試料について日本粘土学会標準粘土委員会から粉末 X 線回折パターン,熱分析曲線,赤外吸収スペクトルのデータが添付されていた.また,参考試料そのもののデータではないが,試料を提供して頂いた協力会社による同等製品の化学分析値あるいは代表的化学組成,粒度分布,品質試験標準値なども公開されている.

その後,標準粘土委員会委員や,委員会からの呼びかけに応じた日本粘土学会会員から,湿式分析法による化学組成の定量分析値²⁾,粒度分布³⁻⁵⁾,蛍光 X 線分析による定量分析値⁶⁾ が粘土科学討論会や本誌上で報告されている.8種の参考試料は会員のみならず会員外からの頒布の要望に応え,のべ件数で年間約50件程度の頒布が続いている.2005年に早稲田大学で開催された第13回国際粘土会議では,参加者全員に参考試料 8 種を,それぞれ約1g程度の見本として無料配付した.ここ数年では海外からの頒布依頼も年間数件あり,国際会議で配付した分も併せて,海外からも当会の参考試料を用いた研究が報告されることが期待される.

こうした頒布事業を進めた結果,2002年に JCSS1101 カオリナイト約100kg の在庫が無くなり,次のロットを使った頒布に移行した.この参考試料は前回の試料とは異なりカオリナイト以外の鉱物として明礬石の混入が明らかとなったので,このたび日本粘土学会標準粘土委員会は試料名を JCSS1101b と変えることにした.

標準粘土委員会では,参考データをさらに充実させ,標準(推奨)データを伴う標準試料へとグレードアップを図るべく,委員の所属する研究・教育機関を中心として,それぞれで分析・測定データを集積する事業を開始し 7),このたび,ひとまとまりのデータを得たので,日本粘土学会評議員会の勧告に従い,ここに公表する次第である.

2.分析・評価の方法

2.1 化学組成分析

誘導結合高周波プラズマ発光分析(ICP-AES)と蛍光 X線分析(XRF)をそれぞれ物質・材料研究機構(NIMS) と国立科学博物館(NMNS)で行った.ICP-AESでは, まず,試料を200 で2時間乾燥し,この乾燥による重 量減少率を求めた、試料をホウ酸と炭酸リチウムで融解 し,希塩酸溶液としたものを分析試料溶液とした.AI, Fe, Mg, Ca, Na, Kの標準物質として関東化学 JCSS 適応標準溶液を, Si, Ti, Pには関東化学 JCSS 適応外 標準溶液を用いた . Seiko Instruments 社製 SPS1700HVR により,測定波長 Si: 251.687, Al: 396.264, Fe: 260.018, Ti: 335.037, Mg: 285.297, Ca: 318.025, Na: 588.995, K: 766.490, P: 177.496 nm の条件で定量分析を行った. 一方 XRF では, 105 での乾燥重量と1050 での強熱 後の重量の差から強熱重量変化を求め、この強熱後の試 料1.2 gをホウ酸リチウム2.4gと混合した.これを Pt₉₀Au₁₀るつぼ中で1100 で溶融してガラスビード測定 試料を作製した.分析は理学製 RIX1000分光計を用い, 50kV , 50mA で発生させた Rh K 線を励起線源として 行った.測定試料と同様にガラスビードに調整した標準 試料から検量線を求め、マトリックス補正を施して定量 分析を行った.分析結果を既報データと共に Table A1 に示す.

2.2 粉末 X 線回折

粉末 X 線回折(XRD)データの収集は,国立科学博物館(NMNS),産業技術総合研究所サステナブルマテリアル研究部門(AISTS),産業技術総合研究所地圏資源環境研究部門(AISTG),東京大学(UT),物質・材料研究機構(NIMS),九州大学(KU)にて行った.それぞれでの測定条件を Table 1に示す.回折計による測定では,一般的な,アルミニウム,凹み付きガラスあるいは無反射石英ホルダーに前面からの粉末試料を装填する方法の他に,試料の配向性を緩和するために試料ホルダーへ側面から粉末試料を装填する方法も用いた(NMNS-DS, UT). さらに配向性の問題のないガンドルフィーカメラによる測定(NMNS-G)も行った.通常,カメラ内の空気散乱によるバックグラウンドを抑制する

Table 1. Condition of measurement for XRD.

	NMNS-D	NMNS-G	AISTS	AISTG	UT	NIMS	KU
Diffractometer/Camera	Rigaku RINT2000	Gandolifi camera (114.6 mm)	Rigaku RINT2100PC/V	Rigaku RINT2500	Rigaku Rint 2100	Rigaku Ultima IV	Bruker AXS M18XHF22-SRA
X-ray source	$CuK\alpha$	$CuK\alpha$	$CuK \alpha$	$CuK\alpha$	$CuK\alpha$	$CuK\alpha$	$CuK\alpha$
Monochromatization	Graphite	Ni-filter	Graphite	Graphite	Graphite	Graphite	Graphite
X-ray generation (kV/mA)	40/20	30/20	40/30	40/50	40/20	40/30	40/100
Divergence Slit (°)	1		1	1	0.5	0.5	0.5
Scatter Slit (°)	1		1	1	0.5	0.5	0.5
Receiving Slit (mm)	0.15		0.15	0.15	0.3	0.3	0.15
Scan Mode	Step scan		Continuos	Continuos	Step scan	Continuos	Step scan
Scan Speed	15 s/step		2°/min	2°/min	6 s/step	1°/min	1 s/step
Resolution (°/step,pixel)	0.02	0.05	0.02	0.02	0.02	0.01	0.02

ために真空ポンプで減圧するが,層間の水分子の脱水の影響を回避するため,カメラ内部の減圧は行わなかった.回折デバイリングはイメージングプレート上にデジタル画像として記録し,中牟田による解析ソフトウェア®りで回折データに変換した.回折データを Table A2に,回折パターンを Fig. 1に示す.Table A2にはロットの変更があった関白カオリナイト以外については,頒布開始から試料に添付されていた回折データ(表中の OUS)も掲載してある.なお,国際鉱物学連合のホームページに掲載されている同連合と提携した RRUFF プロジェクトにより維持管理されている IMA Database of Mineral Properties®りから検索できるAmerican Mineralogist Crystal Structure Database®の結晶構造から理論計算された粉末回折データを参照している.

2.3 赤外吸収分光分析

北海道大学(HU),産業技術総合研究所地圏資源環境研究部門(AISTG),国立科学博物館(NMNS)において測定した赤外吸収スペクトルの測定条件を Table 2に示す.北海道大学ではダイヤモンドプリズムを用いた1回反射による全反射法で,その他は一般的な KBr 錠剤法での測定である.吸収ピークの波数とスペクトルをそれぞれ Table A3と Fig. 2に示す.

2.4 熱分析

示差熱分析と熱重量減少(DTA-TG)を,東京大学(UT),産業技術総合研究所サステナブルマテリアル研究部門(AISTS),産業技術総合研究所地圏資源環境研究部門(AISTG)国立科学博物館(NMNS)で測定した.測定条件を Table 3に示す.DTA 曲線上に現れた吸熱

反応・発熱反応のピーク位置とそれぞれに対応する TG 曲線から読み取った熱重量減少率を Table A4に示す. また DTA-TG 曲線を Fig. 3に示す.

2.5 形態観察

走査型電子顕微鏡(SEM)と原子間力顕微鏡(AFM) による形態の観察をそれぞれ東京大学と北海道大学で 行った.SEMによる観察では,スライドガラス上に粉 末試料を乗せ,エタノールを滴下後これを乾燥して固定 することにより試料を準備した. 観察にあたり, スパッ タ蒸着 (Hitachi E-1030) により 5 nm の白金パラジウ ム膜を導電膜コーティングとして施した.冷電界放射型 電子銃付の Hitachi 製 S-4500走査型電子顕微鏡により, 加速電圧 5 kV, ワーキングディスタンス約17mm, 対 物絞り No. 3 (30ミクロン径) の条件下で, 下方 2 次電 子検出器を用いて観察・撮影を行った、SEM 像を Fig. 4 に示す.一方, AFMによる観察は, キーエンス製の VN-8000を用いて行った. 観察試料は, まず脱イオン水 を加えて100mg/L の分散液を作成し,30分間超音波洗 浄器により分散させ,分散後分散液を白雲母板(8mm × 8 mm)上に40µL滴下し,20分後に余分な懸濁液を ろ紙で吸い取り室温で風乾させることにより作成した. 試料はでカンチレバーを用いて DFM モードで観察し た.AFM 像を Fig. 5に示す.

2.6 粒度分布分析

粒度分布は物質・材料研究機構にてレーザー回折・散乱式粒度分析装置島津製 SALD-7100 (測定範囲0.01~300µm)を用いて行った.それぞれの試料を水またはエタノールに分散し,10分間超音波処理を施した.特に

Table 2. Condition of measurement for FT-IR.

	HU	AISTG	NMNS
Caastusmotou	JASCO	JASCO	JASCO
Spectrometer	FT/IR-6200typeA	FT/IR-620	FT/IR-420
Method	ATR	KBr	KBr
Accumulation	100	100	100
Resolution (cm ⁻¹)	4	4	4
Light source	Standard	Standard	Standard
Detector	TGS	TGS	TGS

Table 3. Condition of measurement for DTA-TG.

	UT	AISTG	AISTS	NMNS
Analyzer	Rigaku Thermo plus EVO TG 8120	Rigaku Thermo Plus 2 TG 8120	SHIMADZU DTG-50H	Rigaku Thermo plus 2 TG 8120
sample (mg)	25 - 35	20	14 - 16	40
Rate of temperature increase (°C/min)	10	10	5	10
Reference Material	alfa-alumina	alfa-alumina	alfa-alumina	alfa-alumina
Sample holder	Pt	Pt	Pt	Pt
Atmosphere	Air	Air	Air	Air

JCSS3101モンモリロナイト(月布)の水分散試料については,超音波処理時間を30分,あるいは60分に延長した試料も用意し,水分散に要する超音波処理の時間依存性を検討した.粒度分布を既報のデータとまとめて Table A5に示す.また分布曲線を Fig. 6に示す.井上³¹,渡村ら⁵¹の報告と同様にモンモリロナイト,サポナイトは凝集・膨潤性が強く安定した粒度分布が得られなかった.JCSS3101モンモリロナイト(月布)の水分散試料は10分間の超音波処理で0.01~0.3μmおよび0.3~7μmにバイモーダルな粒度分布を呈し,超音波処理時間に伴ってその分布は微粒子径側にシフトする.60分後の試料はメディアン径0.021μmのモノモーダルな分布を示した.

2.7 BET 比表面積分析

北海道大学で測定した窒素ガス吸着による BET 比表面積の測定に使用した機器は BECKMAN COULTER 製 SA3100である.測定に供した試料は約200mg で,脱ガス温度120 ,脱ガス時間30分の条件で測定した.測定結果を Table 4に示す.

Table 4 . BET specific surface area.

Sample		SSA (m^2/g)
JCSS1101b	Kaolinite	14.82
JCSS1301	Dickite	3.69
JCSS2101	Pyrophyllite	4.63
JCSS3101	Montmorillonite	7.08
JCSS3102	Montmorillonite	27.35
JCSS3501	Saponite	104.79
JCSS5101	Sericite	4.60
JCSS5102	Sericite, cleaved	10.21

2.8 ゼータ電位測定

北海道大学において,Malvern Instruments Ltd. 製 Zetasizer nanoseries を用いて測定した.まず,100ppm の懸濁液を作成し,超音波分散を1分間行った後,試料をセルに充填しゼータ電位を測定した.酸性領域の測定は0.1M の硝酸溶液を,アルカリ領域の測定は0.1M の水酸化ナトリウム溶液を滴定して行った.測定結果をTable A6ならびに Fig. 7に示す.

3.参考粘土試料の概要

JCSS1101b カオリナイト(関白)

産 地:栃木県宇都宮市宮山田町関白鉱山

性 状:原鉱石を手選選別し,小型ジョークラッシャーで10mm以下に破砕、 乾燥後ボールミルで粉

砕し,60メッシュ以下に節分け

不純物:明礬石,石英

XRD パターンにはカオリナイトの反射に加えて明礬石と石英に一致する反射も現れている.また,IR スペ

クトルに現れた600,630,1090,3485cm⁻¹付近の吸収は カオリナイトではなく明礬石に帰属される. TG 曲線に はカオリナイトの脱水反応に続いて800 付近から僅か な重量減少が始まっている.これは純粋なカオリナイト には見られないもので,混入している明礬石の分解に伴 う脱硫反応と考えられる.従って,強熱減量を測定した 後で分析した XRF の分析値には明礬石由来の硫黄分が 反映されておらず,強熱減量分には脱水に加えて脱硫を 考えなければならない. 化学組成で Si と AI の原子比が 1:1から大きく逸脱していないのは,明礬石の AI に 対して石英の Si がちょうど相殺している結果と考えら れる. 等電点は4程度であり, それよりも低い pH では プラスのゼータ電位,高い pH ではマイナスの電位を有 す.BET 比表面積は他の地域から産するカオリナイト と同程度であり, 欠陥の少ないジョージアカオリン (10.05m²/g)と欠陥の多いそれ(23.50m²/g)の中間値 を示す.AFM 像からは関白カオリンで認められている 六角板状の形態は観察されない.また,板状結晶の輪郭 は不明瞭である.

JCSS-1301 ディッカイト (勝光山)

産地:広島県庄原市川北町(勝光山滝ノ谷鉱床)

性 状:原鉱石を粗砕後,湿式ボールミルで粉砕,乾燥

後解砕・混合したもの

不純物:石英,微量のパイロフィライト,ダイアスポア

など

XRD パターンにはディッカイトの反射の他に,石英,パイロフィライト,ダイアスポアによると考えられる反射が見られるが,これらの反射強度は大きくなく,混入は顕著とは考えられない.また,TG 曲線から得られた熱重量減少はディッカイトの理想組成から計算した13.96%に近いことからも,不純分の混入は多くないと判断される.化学組成におけるSiと AI の原子比も1に近く,石英,パイロフィライト,ダイアスポア相互の相殺による効果も考えなければならないが,不純物が少ないことの現れと思われる.等電点は関白カオリナイトと同じく4程度であり,それよりも低いpHではプラスのゼータ電位,高いpHではマイナスの電位を有す.BET 比表面積はカオリナイトよりも小さな値を示す.AFM 像は,輪郭が明瞭な板状結晶を示す.

JCSS-2101パイロフィライト(勝光山)

産 地:広島県庄原市川北町(勝光山滝ノ谷鉱床) 性 状:原鉱石を粗砕後,湿式ボールミルで粉砕.乾燥

後解砕・混合したもの

不純物:石英,微量のダイアスポア,カオリン

XRD パターンにはパイロフィライト以外の鉱物の反射として考えられるものは,石英に加えてカオリンとダイアスポアが認められる.石英の混入はパイロフィライトに帰属しない IR スペクトルの695,780,800cm⁻¹付近の吸収によっても確認できる.さらに石英の混入により,

化学組成では Si:AI の比率がパイロフィライトの理想組成 2:1よりも Si 過多となっている.等電点は3程度であり,それよりも低い pH ではプラスのゼータ電位,高い pH ではマイナスの電位を有す.BET 比表面積は勝光山ディッカイトや鍋山セリサイトと同程度を示す.AFM 像は不定形な板状を示すが結晶の輪郭は明瞭である.

JCSS-3101モンモリロナイト(月布)

産 地:山形県西村山郡大江町月布 性 状:原鉱石を粉砕濃集処理したもの

不純物:ごく微量の石英

各測定間で, XRD パターンの底面反射の面間隔に12 から15 の範囲で差異が見られる.これは測定時の実 験室の湿度条件の違いにより,層間の水分子の数が異な るモンモリロナイト特有の性質が現れているものであ る.同様に熱分析の110 付近までの脱水による重量減 少や, 化学組成の重量百分率でも含水率に違いが見られ る.しかし,分析値では水素以外の元素についてその原 子数比を比べてみると,分析による相違は顕著ではない ことが判る.XRDパターンに認められる主な混入鉱物 は石英である. モンモリロナイトはマイナスの永久電荷 を有するので, どの pH においてもほぼ一定でマイナス のゼータ電子を示す.BET 比表面積は他の地域から産 するモンモリロナイト (チェトー産モンモリロナイト: 97.42m²/g, ワイオミング産モンモリロナイト: 31.82m²/g) よりも小さい. AFM 像は不定形な板状を示し結晶の輪 郭は不明瞭である.

JCSS-3102モンモリロナイト(三川)

産 地:新潟県東蒲原郡阿賀町白崎

性 状:原鉱石を粉砕して300メッシュの粉末としたもの 不純物:クリストバライト,雲母,角閃石,少量の石英, 長石

月布のモンモリロナイトと同様に層間の水分子が測定した湿度により大きく影響を受けている.月布のモンモリロナイトに比べてクリストバライが相当量混在していることが特徴で、さらに他に混入している鉱物種も多く、化学組成ではSiとKに富み、AIとNaに乏しい.月布モンモリロナイトと同様にマイナスの永久電荷を有するので、どのpHにおいてもほぼ一定でマイナスのゼータ電子を示す.ただし、本試料は低pH領域でゼータ電位のわずかな上昇が認められる.これは、月布モンモリロナイトと比べて端面積の割合が大きいことに因るものと考える.BET 比表面積は他の地域から産するモンモリロナイト(チェトー産モンモリロナイト:97.42m²/g、ワイオミング産モンモリロナイト:31.82m²/g)よりも小さい.AFM像は不定形な板状を示し結晶の輪郭は不明瞭である.

JCSS-3501合成サポナイト 合 成:クニミネ工業(株)

性 状:粉末

不純物:認められない

XRDでは不純物の回折線は認められない.しかし, モンモリロナイトと同じように,層間の水分子が測定する湿度により大きく影響を受けるため,XRDの底面反射の面間隔や熱分析の重量減少率にばらつきが見られる.合成物である本試料の特徴は,Feを含まないMg端成分に極めて近いことで,Naを主成分としてCaの含有量が少ないことである.モンモリロナイトと同様にマイナスの永久電荷を有するので,どのpHにおいてもほぼ一定でマイナスのゼータ電子を示す.ただし,本試料は低pH領域でゼータ電位のわずかな上昇が認められる.これは,粒子が小さく総表面積に対する端面積の割合が大きいことに因るものと考える.BET 比表面積はモンモリロナイトに比べ大きな値を示す.AFM 像は不定形で不明瞭な輪郭を示す.

JCSS-5101セリサイト(鍋山)

産 地:島根県雲南市三刀屋町大字乙加宮(鍋山鉱床) 性 状:原鉱石を水簸したもの.ポリタイプとしては 2M₁を主体とする

不純物:方解石,石英,緑泥石,カオリン

上記の不純物の回折線が XRD で認められる.また, IR スペクトルには870や1420cm 付近に方解石による吸収が観察される場合もあった.熱分析では雲母の(吸熱)脱水反応が700 にかけて、シート構造の崩壊に伴う吸熱反応が800から1000 にかけて見られる.方解石の分解(脱炭酸)も900から1000 にかけて現れるため,方解石の混入を熱分析で確認することは困難である.セリサイトはマイナスの永久電荷を有するので,どの pH においてもほぼ一定でマイナスのゼータ電位を示す.ただし,高アルカリ領域でゼータ電位の低下がみとめられる.BET 比表面積は勝光山ディッカイトやパイロフィライトと同程度である.AFM 像は不定形な板状を示すが結晶の輪郭は明瞭である.

JCSS-5102劈開セリサイト(鍋山)

産 地:島根県雲南市三刀屋町大字乙加宮(鍋山鉱床)性 状:原鉱石を水簸した JCSS-5101を劈開微粉化したもので,平均粒径2μm,最大粒径20μm,厚さ0.01~0.1μm.ポリタイプとしては2M₁を主体とする.

不純物:方解石,石英,緑泥石,カオリン

マイナスの永久電荷により pH 全領域でゼータ電位はほぼ一定の負の値を保ち,高アルカリ領域で低下がみとめられることは,劈開微粉化処理を施す前の試料,JCSS-5101と同様であるが,BET 比表面積はJCSS-5101よりも大きい.AFM 像は不定形な板状を示すが結晶の輪郭は明瞭である.

謝辞

日本粘土学会標準粘土試料委員会は,参考試料の頒布 活動について継続的なご理解・ご協力をいただている協 力会社の社名(敬称略)をここに記し,感謝の意を表し ます.

昭和ケミカル株式会社(JCSS1101b)株式会社勝光山鉱業所(JCSS1301, 2101)クニミネ工業株式会社(JCSS3101, 3501)関東ベントナイト鉱業株式会社(JCSS3102)

斐川礦業株式会社 (JCSS5101,5102)

参考文献

- 1)日本粘土学会企画委員(1990)粘土科学,30,163.
- 2) 西戸裕嗣・坂本尚史 (1994) 第38回粘土科学討論会 要旨集,164-165.

- 3) 井上厚行(1994) 粘土科学, 34, 108-111.
- 4)渡村信治・宮脇律郎・犬飼恵一・越野隆史・水野 勝弥(1994)第38回粘土科学討論会要旨集,166-167.
- 5)渡村信治・犬飼恵一・芝崎靖雄・水野勝弥 (1995) 第39回粘土科学討論会要旨集,186-187.
- 6)河野忠臣・鈴木盛久・杉田泰一・岡崎敬之(1999) 粘土科学,38,255-260.
- 7)八田珠郎・宮脇律郎・根本清子・篠原也寸志・真木 太一・山田裕久・田村堅志(2006)第51回粘土科学討 論会要旨集,156-157.
- 8)中牟田義博(1999)鉱物学雑誌,28,117-121.
- 9) IMA Database of Mineral Properties, Created and maintained by the RRUFF Project in partnership with the IMA. (http://rru_info/ima/)
- 10) American Mineralogist Crystal Structure Database (http://rru .geo.arizona.edu/AMS/amcsd.php)
- 11) Cahoon, H. P. (1954) Am. Mineral., 39, 222-230.

Table A1 . Chemical composition.

	JCSS1101	b kaolinite	,	JCSS130	1 dickit	e		JC	SS2101	pvrophv	llite
	NIMS	NMNS	NIMS	NMNS	OUS ²⁾	KSU ⁶⁾		NIMS	NMNS	OUS ²⁾	KSU ⁶⁾
(wt.%)							_				
SiO ₂	43.9	42.47	45.2	43.72	47.12	47.108		67.9	68.54	71.09	70.386
TiO ₂	0.1	0.08	0.2	0.22	0.11	0.208		0.2	0.22	0.17	0.202
Al_2O_3	36.6	41.03	38.6	43.17	39.07	40.878		23.3	25.92	24.00	24.414
Fe_2O_3	0.0		0.0		0.02	0		0.2	0.19	0.15	0.088
FeO					n.d.					0.04	
MnO					n.d.	0				n.d.	0
MgO	0.0	0.16	0.0	0.16	n.d.	0		0.0	0.19	0.01	0.011
CaO	0.0	0.17	0.0	0.14	0.04	0.096		0.0	0.15	0.03	0.090
Na ₂ O	0.1	0.10	0.1	0.09	0.02	0.090		0.1	0.19	0.06	0.171
K ₂ O	0.8	0.61	0.2	0	0.01	0.129		0.1		0.01	0.126
P_2O_5	0.22	0.21	0.10	0.10	0.18	0.082		0.03	0.05	0.06	0.017
$H_2O(+)$	17.7	15.86	15.4	13.71	13.68	11.409		8.2	4.62	4.53	4.495
H ₂ O(-)	0.6		0.2		0.07			0.3		0.03	
CO ₂					0.06					0.02	
Total	100	100.69	100	101.31	100.38	100		100	100.07	100.20	100
С					0.0191					0.0064	
Н					1.5404					0.5107	
N					0.0049		_			0.001	
(atomic rati	o)						_				
Si	1.008	0.932	0.995	0.920	1.010	0.987		2.129	2.063	2.140	2.124
Ti	0.002	0.001	0.003	0.003	0.002	0.003		0.005	0.005	0.004	0.005
Al	0.990	1.061	1.002	1.071	0.987	1.010		0.861	0.919	0.851	0.868
Fe ³⁺	0.000		0.000	0.000	0.000	0.000		0.005	0.004	0.003	0.002
Fe ²⁺						0.000				0.001	
Mn			0.000			0.000					0.000
Mg	0.000	0.005	0.000	0.005		0.000		0.000	0.009	0.000	0.000
Ca	0.000	0.004	0.000	0.003	0.001	0.002		0.000	0.005	0.001	0.003
Na	0.004	0.004	0.004	0.004	0.001	0.004		0.006	0.011	0.004	0.010
K	0.023	0.017	0.006		0.000	0.003		0.004		0.000	0.005
Р	0.004	0.004	0.002	0.002	0.003	0.001		0.001	0.001	0.002	0.000
H(+)	2.708	2.322	2.262	1.925	1.957	1.595		1.709	0.927	0.910	0.905
H(-)	0.092		0.029		0.010			0.063		0.006	
С					0.002		_			0.001	
(ppm)											
Rb											
Ва		980		45					33		
Nb				9					18	+	
Sr		3004		1714					133		
Pb				30					53		
Zr		337		377					317	++	
Υ		8		10					34	+	
Cr		9		3					2		
Ni		27		27					28		
V		76		17					12		
Cu		142		146					132		
Cs											
Sn											
La											
Се											

n.d.: not detected

^{+:} detected with trace amount

^{++:} detected with small amount

Table A1 . (continued)

	JCS	S3101 m	ontmoril	lonite	JCS	S3102 m	ontmoril	lonite	JCS	S3501 sa	ponite
	NIMS	NMNS	OUS ²⁾	KSU ⁶⁾	NIMS	NMNS	OUS ²⁾	KSU ⁶⁾	NIMS	NMNS	OUS ²⁾
(wt.%)											
SiO ₂	54.0	58.94	55.39	58.775	66.4	72.32	66.54	71.113	45.8	51.12	46.67
TiO ₂	0.1	0.17	0.14	0.155	0.1	0.11	0.10	0.102	0.0	0.03	0.02
Al_2O_3	19.9	22.93	19.91	21.252	11.9	13.62	12.76	12.761	4.4	4.39	4.71
Fe_2O_3	1.9	2.63	1.57	2.360	1.6	2.13	1.41	1.898	0.0	0	0.01
FeO			0.37				0.22				n.d.
MnO			0.01	0.009		0.01	0.01	0.017			n.d.
MgO	3.0	3.62	3.40	3.247	2.6	3.16	2.78	2.790	25.6	30.56	25.35
CaO	0.4	0.59	0.52	0.522	0.5	0.67	0.62	0.609	0.1	0.21	0.11
Na ₂ O	3.4	3.81	3.37	3.398	2.0	2.21	1.95	1.988	3.2		3.23
K ₂ O	0.4	0.07	0.07	0.186	1.3	1.29	1.23	1.436	0.1	0.09	0.02
P_2O_5	0.01	0.03	0.04	0.004	0.01	0.03	0.02	0.003	0.00	0.02	0.03
H ₂ O(+)	8.0	6.75	6.37	10.092	6.7	4.38	3.98	7.283	9.2	8.56	6.88
H ₂ O(-)	8.9		8.73		6.9		8.40		11.6		12.45
CO ₂			0.45				0.19				0.16
Total	100	99.54	100.34	100	100	99.93	100.21	100	100	98.62	99.64
С			0.1228				0.0525				0.0443
Н			1.6913				1.3772				2.1650
N			0.029				0.018				0.014
(atomic ratio											
Si	3.883	3.784	3.886	3.894	4.655		4.586	4.646	3.596		3.628
Ti	0.005	0.008	0.007	0.008	0.005		0.005	0.005	0.000		0.001
Al	1.687	1.735	1.646	1.659	0.983		1.037	0.983	0.40		0.432
Fe ³⁺	0.103	0.127	0.083	0.118	0.084	0.101	0.073	0.093	0.000	0.000	0.001
Fe ²⁺			0.022				0.013				
Mn			0.001	0.001		0.001	0.001	0.001			
Mg	0.322	0.346	0.356	0.321	0.272		0.286	0.272	2.99		2.938
Ca	0.031	0.041	0.039	0.037	0.038		0.046	0.043	0.008		0.009
Na	0.474	0.474	0.458	0.436	0.272		0.261	0.252	0.48		0.487
K	0.037	0.006	0.006	0.016	0.116		0.108	0.120	0.010		0.002
Р	0.001	0.002	0.002	0.000	0.001		0.001	0.000	0.000		0.002
H(+)	3.833	2.890	2.981	4.460	3.129		1.830	3.174	4.819		3.568
H(-)	4.269		4.085		3.227		3.862		6.076	3	6.457
С			0.043				0.018				0.017
(ppm)											
Rb		10				107				7	
Ва		122	+			705	++				
Nb		6				13				2	
Sr		187				151					
Pb		6				21				12	
Zr		131	+			222	++			14	
Υ		34	+			51	+			6	
Cr		8				7				2	
Ni		23				23				30	
V		20				6				3	
Cu		91				79				190	
Cs			+				+				+
Sn											+
La											
Се			+				+				

n.d.: not detected

^{+:} detected with trace amount

^{++:} detected with small amount

		JCSS510	1 001011			ICCC	55102 se	rioito
	NIMS	NMNS	OUS ²⁾	.e KSU ⁶⁾		NIMS	NMNS	OUS ²⁾
(wt.%)	INTINIS	INIVINS	003	NSU	-	INTINIS	INIVINS	003
SiO ₂	46.2	47.04	47.56	47.811		45.4	46.89	46.42
TiO ₂	0.3	0.23	0.15	0.258		0.2	0.24	0.24
Al_2O_3	28.9	31.20	29.68	29.670		28.3	31.35	30.06
	3.7	4.30	2.53	3.863		4.0	3.87	2.81
Fe ₂ O ₃	3.7	4.30		3.003		4.0	3.07	
FeO			1.25					1.34
MnO		0.04	0.04	0.038		4.0	0.03	0.05
MgO	0.9	1.25	1.10	0.958		1.0	1.14	1.19
CaO	1.7	1.89	1.83	1.611		2.0	1.57	2.20
Na ₂ O	0.2	0.21	0.13	0.197		0.1	0.20	0.13
K₂O	9.4	9.23	8.98	9.289		9.2	9.31	8.85
P_2O_5	0.10	0.10	0.12	0.087		0.09	0.11	0.12
H ₂ O(+)	8.0	5.78	4.82	6.218		9.0	6.59	5.01
H ₂ O(-)	0.6		0.44			0.7		0.46
CO ₂			1.19		_			1.53
Total	100	101.27	99.82	100	_	100	101.30	100.41
С			0.3264					0.4185
Н			0.5891					0.6126
N .			0.025		_			0.040
(atomic ratio)								
Si	3.276	3.167	3.270	3.284		3.266	3.173	3.198
Ti	0.016	0.012	0.008	0.013		0.011	0.012	0.012
Al	2.415	2.476	2.405	2.402		2.399	2.501	2.441
Fe ³⁺	0.197	0.218	0.131	0.200		0.217	0.197	0.146
Fe ²⁺			0.072					0.077
Mn		0.002	0.002	0.002			0.002	0.003
Mg	0.095	0.125	0.113	0.098		0.107	0.115	0.122
Ca	0.129	0.136	0.135	0.119		0.154	0.114	0.162
Na	0.027	0.027	0.017	0.026		0.014	0.026	0.017
K	0.850	0.793	0.788	0.814		0.844	0.804	0.778
Р	0.006	0.006	0.007	0.005		0.005	0.006	0.007
H(+)	3.784	2.596	2.210	2.849		4.323	2.975	2.303
H(-)	0.284		0.202			0.336		0.211
С			0.112					0.144
(ppm)					_			
Rb		417					434	
Ва		1007	++				1078	++
Nb		4					4	
Sr		36	+				36	
Pb		13					9	
Zr		72					87	
Υ								
Cr		13					5	
Ni		15					13	
V		51	+				50	+
Cu								
Cs			+					+
Sn								
La								
Ce								+
==								<u> </u>

Table A2-1 . Powder X-ray diffraction data of JCSS-1101b kaolinite from Kampaku.

quartz	1 h k 1					20 1 0 0							100 1 00 1									7 1 1 0			- 6 -	3			5 2 0 0	2 2 0 1		
	ρ /	 ,	- 6	ı		4.26					0		3.34		e -	- 9						4 2.46			2.28	7 2.24 5	2		2.13	1.980		
	K		o -								-				- 0	0						2				0 0	2					
iite	H	,	- c)							-				- 0	0						0				- 2	-					
alunite	I	Ļ	55	9							28				100	10						4				35	7					
	ρ	r 1	5.70 4.94	<u>-</u>							3.49				2.98	2.87						2.47				2.27	2.21					
	-			0	0				_	2		-	-	2 2			7	- 0	0 -	1 2	7 0		ი თ	ი –	ი –	5		7 -	₂ ع	ი 2	- 6	7 7
	X	0			-		<u>_</u> _	- 2-	7	0		T	-	- -			7	0 %	က ကို	2 ح	0 -		00	-3	— cs	-3		ი 0	'		2 8	4
kaolinite	4	0			2 –1		7 7	l	0			2	-	4 –1 5 –1				5 -2 7 -1	6 1 9 -1	L L	2 1		7 8 -2		2 5	2 -1			2 0 1 -2		2 2	- 0
kac	I	100			52		3 46						_							_	_		_	_								
	ρ	7.13		4.47	4.36		4.18	3.85	3.73	3.57		3.41	3.36	3.16			2.74	2.57	2.55 2.53	2.51	2.49		2.38	2.34	2.30	2.25		2.19	2.13	2.00 1.985	1.948	1.923
	I/I_0	100	უ დ	19	18	16	16	7	4	64	œ	က	22		16	2		12	6	4	9	2	7	25	20	က	2	လ	-	8	ဗ	
Σ	ρ	17	5.72	4.47	4.37	4.27	4.19	3.85	3.75	3.58	3.50	3.45	3.35		2.99	2.89	2.76	2.57	2.54	C	06.2	2.46	2.39	2.34	2.30	2.25	2.21	2.20	2.13	1.992	1.940	
	I/I_0	001	4 /	22	20	20	8	7	4	11	6		22		16	2		=	12	Ç	<u>∞</u>	4	10	27	21	ი თ	လ	က	2	7	4	က
NIMS	ı	7.17	5.72	4.47	4.37	4.26	4.18	3.85	3.74	3.58	3.50		3.35		2.99	2.89		2.57	2.54	C	06.2	2.46	2.39	2.34	2.30	2.25	2.21	2.19	2.13	1.991	1.940	1.926
	I/I_0	<u> </u>	4 0	27	25	23	21	00	2	70	=		27		20	2	-	18	13	2	47	ဗ	ω	33	24	က	2	4	2	6	က	
Ţ	$^{\prime}I$ ρ	20	5.74 4.98	4.47	4.37	4.28	4.20	3.86	3.75	3.59	3.50		3.36		2.99	2.89	2.76	2.57	2.54	C	06.2	2.47	2.39	2.35	2.30	2.26	2.21	2.20	2.13	1.993	1.943	
	I_0	0 0 0 0	n 00	20 20	20	8	15	9	4	72	7		33		17	2		15	10	Ç	<u>∞</u>	က	œ	24	21	4	2	2		9	2	
AISTG	_	7.16 1					4.18	3.85	3.74	3.58	3.50		3.35		2.99	2.89		2.56	2.53	C G	06.2	2.46	2.39	2.34	2.29	2.25	2.21	2.19		1.991	1.939	
	I_0	93	4 0	28	30	59	28	12	7	100	=		45	2	26	2	7	21	15	5	- 7	4	12	39	33	2		4	က	10	2	
AISTS	//) <u>%</u>											0		88	2									52		6	3		88	
¥	P	7.13	5.70	4.45	4.35	4.25	4.18	8	3.73	3.58	3.49		3.34	3.10	2.98	2.88	2.75	2.56	2.53	c	06.2	2.45	2.3	2.34	2.29	2.25		2.19	2.13	1.988	1.938	
-DS	I/I_0	100	4 ∝	29	29	25	23	10	9	91	Ξ	∞	78	2 2	23	2	-	19	15	7	/7	4	10	38	29	4	က	4	2	10	2	
NMNS-DS	P	7.17	5.73	4.47	4.37	4.27	4.19	3.86	3.75	3.58	3.50	3.45	3.35	3.16	2.99	2.89	2.76	2.57	2.54	0	2.49	2.46	2.39	2.34	2.30	2.25	2.21	2.20	2.13	1.991	1.940	
NC	I/I_0	90	n a	24	24	25	20	œ	2	83	6		29	2 -	19	2	-	16	12	5	7	က	10	32	56	က	လ	4	2	6	4	2
NMNS-DN	Iρ	16	5.72	4.46	4.36	4.27	4.19	3.85	3.74	3.58	3.50		3.35	3.15	2.99	2.89	2.75	2.56	2.53	C C	7.30	2.46	2.39	2.34	2.29	2.25	2.21	2.19	2.13	1.990	1.939	1.923
ניז	I/I_0	100 '	သ	33	36	59	30	=	7	78	10		91		20	-	7	22	15	,	/7		10	43	31	4		2	-	12	2	
NMNS-G	ı	7.13 1	5.69 4.94	4.44	4.34	4.26	4.17	3.84	3.73	3.57	3.49		3.34		2.98	2.88	2.76	2.56	2.53	6	2.49		2.38	2.34	2.29	2.25		2.19	2.13	1.989	1.938	

		2				2			က				_						က		
		_				- 2			_				2						_		
						3 0			2 0				5						2		
		818 13				1.672			. 659.				1.542						1.453		
						_			_				_								
3 0				2 0											10						4
0 0				2											0 2						4 0
5 34				25											20						3
																					5
1.910				1.744										1.50	1.494	1.48	1.48				1.425
က	3 3 2	2	4		0		4	0	က	-	က	4	4		0	-	-		2	က	
-3	4 & 2	0	0		2		0	4	-3	-5	က	-3	က		9	-3	က		က	2	
	-2		0		_							T			0					2	
	3 2 2		2		_							2				5				2	
1.899	1.865 1.842 1.840	1.830	1.783		1.679		1.669	1.667	1.659	1.620	1.614	1.587	1.541		1.490	1.489	1.486		1.457	1.438	
9	2	2	က	က	က			_∞		-	1	7	4	7	10	71		7	2	-	
1.903	1.840	1.820	1.789	1.746	1.683			1.664		1 600	1.022	1.585	1.542	1.503	1 400	- 40		1.469	1.453	1.432	
5	က	2	က	4	4			유		Ľ	2		က	2	-	=	12		က		
1.904	1.839	1.819	1.789	1.746	1.681			1.662		1 601	1.021		1.542	1.503	1 400	7.	1.487		1.450		
7	က	2	က	လ		4		유		Ľ	2	7	2	2	7	<u>+</u>			2	_	
1.904	1.843	1.820	1.790	1.747		1.682		1.665		1 600	0.00	1.587	1.543	1.504	1 400	064.			1.454	1.429	
9	က	2	4	4	4	က		∞		-	+	7	4	2	-	=			2		
1.902	1.840	1.818	1.788	1.746	1.686	1.679		1.665		1 601	1.021	1.588	1.542	1.503	1 400				1.450		
œ	4	2	2	9		2		15		0	0	က	œ	က	00	0.4	28	7	က		
1.900	1.839	1.817	1.787	1.744		1.679		1.664		1 610	0.0	1.584	1.541	1.503	1 100	201.	1.486	1.467	1.451		
œ	က	က	4	2	2			12		7	-	လ	2	က	ŏ	2	19	7	က	-	-
1.903	1.841	1.819	1.788	1.746	1.681			1.664		1 601	1.02.1	1.586	1.542	1.503	1 400	064	1.487	1.468	1.452	1.432	1.428
7	က	4	4	4	4			=		ď	>	7	2	က	<u> </u>	2	15	7	2	-	-
1.903	1.840	1.818	1.788	1.745	1.681			1.663		1 600	1.020	1.585	1.541	1.503	1 480	604.	1.486	1.468	1.453	1.430	1.427
7	က	_	က	က	2			15		0	0	လ	2	က		21		2	က	-	
1.900	1.839	1.817	1.787	1.743	1.684			1.663		1 610	6.0.1	1.584	1.541	1.501		1.487		1.467	1.451	1.428	

Shokozan.
from
dickite
S-1301
JCSS
a of
data
diffraction
X-ray
Powder
A2-2.
ble

/ X	c	0 7		1 0				0				3			2 1		0 4	-				2	0		
diaspore I h		> x		100				9	- >			25 1			2 0		9 0					1 46	1 46		
dia dia		4.7		3.99				3 22				2.56			2.44		2.39	2.32				2.13	2.08		
-	! 		0				-								0				c	7 -		0		-	
×			0				1								-				,			2 0		2 0	
yuar LZ I h			20				70								7				¢	ဝက		2		2	
ρ			4.26				3.34								2.46				c	2.24		2.13		1.980	
-	-	2	0	-			7 7	6	1	8 8			0 -		-	- 0						2	0 2 0		
	0	0 0	 	0 -2			T T	0		0 0		-2 0 -1 -3	2 0 -1 3		1 -3	-2 -3						1 3	2 -1 -3		
1	67	30	100 20 20 20 20 20 20 20 20 20 20 20 20 2	84			10	34	5	77 27			17		23	28						10	+ = =		
1 1	9.19	4.59	4.41 4.27 4.23	4.06			3.49	3	5	3.06		2.57	2.54		2.43	2.41	-					2.15	2.09	9	
-	5	0	- 0 -	7 7	2	e 4	2	က	-	t 60	4 5	0 0	4	7 0	,	2	9	2 4	9		4 2	0 9		2	5
h k	0 0	0 2	1 1 1 0 2		0 2	- 0	_	0 2	+		0 2	1 3		2 0		0 2	0 0	1 3			2 3			2 2 -2 0	
I h	100		29 34 24	- 54 -	39	8 -	16	4	u		9	. 6		- 61		-	9	44			ဗ် က			2 - 7	
ρ	7.16	4.47	4.44 4.37 4.27	3.96	3.79	3.61	3.43	3.26	5	2.94	2.79	2.56	2.53	2.51		2.41	2.39	2.32	2.30		2.21	2.18		1.979	1.974 1.939
I/I_0	- 00 0	- 0	446	1 2 2	2	45	1 2 4	00	-	1	0	2	2	2	7 5 7		2	2	-		-	-	-	2	-
ρ	9.21 7.18 5.69	4.72	4.45 4.38 4.26	4.14 3.99 3.95	3.80	3.59	3.48 3.43 3.35	3.27	3.12	3.07	2.80	2.56	2.53	2.51	2.46 2.44 2.43		2.39	2.33	2.30		2.21	2.13	2.07	1.975	1.939
I/I_0	- 60 0		υ 4 ε	5 5 2	2	29	- 2		+	- 2		က	2	က	7 2 7		2	2			-	-	-	2	-
21 1	9.18 7.17 5.68	4.72	4.45 4.38 4.26	4.14 3.99 3.95	3.80	3.58	3.49 3.43		ç	3.10	2.79	2.56	2.52	2.51	2.46 2.44 2.43		2.39	2.33			2.21	2.13	2.08	1.974	1.935
I/I_0	- <u>@</u>		16 17 9	8 4 4	9 -	26	5 2 2		5	e –	-	6		6	0 6 2	2	2	16	က	-	5		7 7	2	2
	20 53	4.72	4.46 4.39 4.28	4.15 4.00 3.97	3.80	3.59	3.48 3.43 3.35	3.27	3.12	3.07	2.80	2.56		2.51	2.46 2.44 2.43	2.41	2.39	2.33	2.30	2.25	2.22	2.19 2.13 1.11	2.10	1.977	1.939
I_0	- 6 ·	-	456	2	2	53	2 2 2	-	-	1	-	က	1	က	- 2 2	2	2	2			-	- 0	-	2	-
d I	9.18	4./-	4.44 4.37 4.26	4.13 3.98 3.96	3.79	3.58	3.48	3.25	3.11	3.06	2.80	2.56	2.54	2.51	2.46 2.44 2.43	2.41	2.39	2.32			2.21	2.13	2.08	1.973	1.935
I/I_0	100 -		302	5 3 2	က	80	2 8 9		+	- 2 -	-	က		က	- 2		8 2	7			-	-	-	က	-
		4.69	4.43 4.36 4.25	4.13 3.98 3.94	3.79	3.58	3.46 3.42 3.34		ç	3.06 2.95	2.79	2.56		2.50	2.45		2.38	2.32			2.21	2.12	2.08	1.972	1.932
1/10	-		110	3 8 1	2	63	e 4 0	-		- m		9	ဗ	9	4 4	4	9	13	2	-	-	0 - 0		4	-
		4.71	4.45 4.38 4.27	4.14 3.99 3.95	3.80	3.58	3.48 3.43 3.35	3.27	3.12	3.07	2.80	2.56	2.53	2.51	2.44	2.41	2.39	2.33	2.30	2.25	2.21	2.19 2.13 2.11	2.09	1.975	1.935
1/I ₀	- <u>6</u> 0 +		ε 4 α	4 2	2	9/	- 2 4	00		2 - 0	000	5	-	2			∞ -	4	-		0	00	-	2	-
	9.10 7.14 5.66	4.09	4.43 4.36 4.25	4.13 3.97	3.79	3.58	3.47	3.26	3.11	3.06	2.79	2.56	2.52	2.50	2.45		2.38	2.32	2.30		2.21	2.13	2.07	1.972	1.934
ا , ه	1001		40 49 22	12	4	77	7 10 16		က	ന ന സ	ာက	19		22	13		10	39	œ		2	8 2	es e	21	4
NIMINS-G $d I/I$	7.17		4.44 4.39 4.28	3.98	3.80	3.59	3.48 3.44 3.35		3.12	3.07	2.80	2.57		2.51	2.44		2.40	2.33	2.30		2.21	2.13	2.08	1.977	1.940
I/I_0	 - <u>0</u> 0		4 to to	- 5 2 2 -	- 60	82	2 8 9	-		- 2		က	2	3	2	2	e –	2	7		-	0		2	-
	9.22 7.19 1 5.70	4.73	4.45 4.38 4.27	4.15 3.99 3.96	3.80		3.48 3.43 3.35	3.27	3.12	3.07 2.96 2.96	2.80	2.56	2.53	2.51	2.46 2.44 2.43	2.41	2.39	2.33	2.30	2.24	2.21	2.19 2.13 2.11	2.10	1.976	1.938

	0 4 1	1 5 0	2 1 1		2 2 1	2 4 0	0 9 0		· c	1 2 -		2 5 0
2	5	-	16		20	13	2		q	24		9
1.902	1.815	1.733	1.712		1.633	1.608	1.571		-	1.480		1.432
	1 2			3					1 1	c	າ –	
	-			0					- 8	•	-	
	13			2					5 4		7	
	1.818			1.659					1.542	-	.453	
				4						3		
				1 -3						<u>ب</u>		
				00						10		
				1.653						1.487		
	8 9 8 1			4 4 5 0 6 5 4 0 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			1 2 2 2 2 4	3 2 8 8 8		0 0 0 0		
	2 5 0 0 0		- 5 2	- 2 - 2 -	- 2		1521	-2 2		6 4 2 0	၁ ကု က	0 7 0
	0 8 4			- n n a 6			1 2 2 1	∞ ∞ −		4 - 6		
1.896 1.861	1.848	1.762	1.715	1.657	1.627	1.611	1.591 1.587 1.572	1.558 1.555 1.549		1.488	1.459	1.432
0	1 2		-	2		-	0	-	-	က	-	-
1.919 1.897 1.860	1.818		1.682	1.652		1.609	1.587	1.557	1.542	1.487	1.457	1.433
	- 6		-	- 2				-	-	က	-	-
1.916 1.900 1.859	1.818		1.683	1.668				1.557	1.541	1.488	1.457	1.433
- 2 -	7 7	-	2	ю 4 го	1 2	-	-	2	-	0 -	2	-
1.920 1.897 1.861	1.818	1.737	1.685	1.669 1.659 1.652	1.631	1.610	1.588	1.558	1.543	1.489	1.458	1.430
	1 2		-	8			-	-	-	က	-	-
1.918 1.894 1.857	1.817		1.682	1.650			1.586	1.557	1.541	1.487	1.459	1.432
	- v			က		-	-	_	-	က	-	-
1.914 1.893 1.857	1.816			1.649		1.607	1.586	1.554	1.541	1.486	1.456	1.431
	2	0 0	0 7	2 4		-	- 0	-	-	<u> </u>	2	-
1.918 1.897 1.860	1.842	1.772	1.711	1.667	1.635 1.629 1.619	1.607	1.589	1.557	1.542	1.487 1.475 1.470	1.456	1.432
0	0 - 4	0 0	0 0	8	- 0	0	0 0	-	- 0	- 70	-	
1.917 1.895 1.857	1.837	1.753	1.710	1.649	1.631	1.605	1.587	1.556	1.540	1.486	1.458	1.436
64 K	ε 4	-	9	8 2	ო ო		2	4	2	24	2	-
1.922 1.899 1.861	1.819	1.737	1.683	1.665	1.632		1.590	1.558	1.544	1.489	1.458	1.431
	m	0 0	00-	- e						- co ·	-	
1.921 1.901 1.860	1.842 1.819 1.790	1.733	1.738	1.667	1.633	1.609	1.589 1.586 1.571	1.558	1.542	1.488 1.475 1.470	.405	1.460 1.457 1.437 1.433

Shokozan.
from
yllite
hd
yro
Q
-2101
Š
\ddot{c}
of J
data
diffraction
(-ray di
der >
. Pow
A2-3
Table /

	~	-	. 0	0			-	-	2	-	-	2 2	2	-	0 0	-	2	0	2 3	- ,	-					
4	h k	_ ا		-			0 -2	0 2		_		1	0 2	-2 0		-1 -3	- - - 3		0 0	1	-					
kaolini+a	I I	100				8 46 3 23	5 33	3 15		1 2			4 7	7 5	6 7 5		1 5 0 10		8 7 5 18		53					
	ρ	7 13	4.47	4.36		4.18	3.85	3.73	3.57	3.41	ල ල	3.16	2.74	2.57	2.56	2.5	2.51 2.50	2.4	2.38	23.3	2.29					
	k /		2 0				1 0				2 0				3 0		2 1	0 1	1 1 1					2 1	0	
discoore			0 8				-				1 9				-		2 0		3 0					- 1	-	
			4.71				99 100				22 (.56 25		44	39	2.36 9 2.32 63					2.13 46	2.08 46	
	ρ		4				က်				က				2.		2	2	2.2						2.	
	k /				0 0						0						1				1 2			0 0		
2 Ishta	han 12				20 1						70						7 1				 9 K			5 2		
	l b				4.26						34						2.46			9	2.28			2.13		
	 -	 	2	0 0	4	_				5 5	က် ့	2 8 2	ကက	00	∞	0 -		- 2	· e –		.v (N	1 2 2	e c		7 E – –	- 2
4	× ×		0		-	-	2 -2			- -		1 0 2	- - ·	ကက	0 p 7	3 0	ဗု	ი ი	- 0	0 3		7 2 5	0 "	, ,	2 6 4 2	0
nyronhyllite	I h	0 /9	30 0		70 72		84 0			16 -1 10 -1		34 0 77 0 27 1			10 -2 20 -1 3 0				5 1 2			1 -2 1	6 -2		2 -2 14 -1 1 2 2	
2	ρ	9.19	4.59	4.42	4.27	57.	4.06	3.77		3.49	!	3.18 3.06 2.95	2.74	2.58	2.57 2.56 2.55	2.54	2.43	2.41	2.36	2.32		2.22 2.21 2.18	2.16	· ·	2.09 2.08 2.08	2.07
	I/I_0	001	39	7	17	9					54	80		3.8	2	9	4 /	∞	-	- ი	ი თ			က	က	ď
X	/I P		4.61	4.43	4.26	4.18				3.51	3.35	3.07		2.57	2.55	2.54	2.46	2.42	000	2.30	2.28	2.17	2.15	2.13	2.09	2.06
] - -	l	46 7	7	14	9			-	- 2	1	100		96	2	9	4				s 2		ဗ	က	က	c
NIMS		22 17		4.42	4.26	4.19				3.52		3.07 10		2.57 3.9	2.55	2.53	2.46	2.42		2.30	2.28	2.17	2.15	2.13	2.09	2.06
	/ ₀ /	l	30 7		38 7	7 02		2				64			17 2	21 2	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 4	c		- es		7	9	∞	
H	5	25			4.27 3	20		3.76	.64 3 .58 2	20	36	80		.58 14.2	26	54	46			5 00	29 24	17	2.15	2.13	5.09	2.06
	ρ	l		4		4		ю.	ന് ന്	ကက	က	က		2	2	2	2 2		c	1 21	2 2	2				
AISTG	I/I_0		9 46	9	55 19	9 8	99 2				34 60	100		57 4.5	55 5		5 12 8				24 2		5 2	3 4	99 4	90
Δ١	d	9.1	4.59	4.44	4.25	4.18	3.99				3.34	3.07		2.57	2.55	2.53	2.46			2.3	2.28		2.15	2.13	2.09	2 06
AISTS	I/I_0			6	18	7					- 24	100		4.46	2	9	9 6				2 4		8	es	e	4
ΔIS	9	9.16	4.56	4.42	4.25	4.16				3.51	3.34	3.06		2.57	2.55	2.53	2.45			2.30	2.28	2.16	2.15	2.13	2.08	2 06
-0.5	1/1	97	- 84	13	26	10	က	-		2 2	3 22	100	-	7.77	6	12	6			- 4ı	ဂ က	4	2	2	9	2
NMNS-DS	P	9.17	4.60	4.44	4.25	4.19	3.99	3.77	3.69	3.52	3.34	3.21	2.71	2.57	2.55	2.53	2.46		2.36	2.30	2.28	2.16	2.15	2.13	2.08	2.06
	1	 00	41	က	œ		-		0 -	- !	27	100		1.49	7	2	3 2		0 0	വാധ	7 -	-	-	2	-	-
NMNS-DN	ρ I	9 9	4.58	4.41	4.23		3.97		3.68	3.50	3.33	3.05		2.56	2.54	2.53	2.45		2.35	2.29	2.28	2.16	2.15	2.12	2.08	2 0.5
	1 1. o	40	20	42	43				2		100	54		17.9		56	98 36		c	ז כ	- 4	∞	6	9	6	6
NMNS-G		23	4.61	4.43	4.26				3.71		3.35	3.07		2.57 17		2.54	2.46		700	t 6	2.29	2.17	2.16	2.13	2.09	2.06
ーフ		1	•	4	•				.,			., .,		- "		- 4				. (.,		- 4		
	- - -	54	39	7	91	2 2	8 8		2	2 2	_	100	_	4	4	9	2	_		- 2	4 2	2	က	က	က	c

7 -2 0 3 6 1 -3 2	-1 -3					3 -2 4 0	1 -3											
2.00	1.899					1.667	1.659											
	_			-	-	-		-		00		-	-	-			C	
	1 3			0	-	-		2 2		2 4		2 3	<u>-</u>	-			2	1
	2			2	~	•		20		13		9	24	1			9	,
	1.902			1.815	1 678	5		1.633		1.608		1.523	1 480	2			1 432	
-				2		2					-					က		
2 0				_		0 2					1 2					_		
2				13		က	7				2					2		
1.980				1.818		1.672	1.659				1.542					1.453		
		5 3						2 -						4 0				
		1 3 2 2						1 -5						3 2 6				
		- 2						က ထ						4 2				- 1
1.999	1.901	1.874	1.838	1.817	1.682	1.676	1.658	1.649	1.630	1.604	1.541	1.528	1.494	1.474	1.470	1.454 1.445	1.434	1.425
2	-		7	2		က		က	3		4		4	+	-	-		-
1.981	1.891		1.840	1.818		1.672		1.645	1.631		1.542		1.493		74.	1.454		1.426
2	2		œ	9	2	က	က	4	က		4 0	1	ი ო	· +	-			-
1.980	1.892		1.840	1.818	1.689	1.672	1.656	1.646	1.631		1.542	200	1.494		0,4.			1.426
4	က	2	2	12	4	9	2	9	9	6	7		12	: '	9	2		
1.983	1.894	1.878	1.842	1.820	1.691	1.674	1.656	1.647	1.633	1.577	1.543		1.493	2 7	7/4/1	1.455		
2	2		6	7	2	ဗ		က	4		2		က					
1.979	1.890		1.839	1.816	1.688	1.671		1.645	1.628		1.541		1.492					
2	2		6	7	2	က		4	3		2		2		-	-	2	2
1.976	1.890		1.837	1.815	1.687	1.669		1.642	1.628		1.540		1.491		1.400	1.451	1.438	1.423
က	2	-	∞	6	2	4		4	2		9		9 9	· .	7	-	-	-
1.979	1.890	1.875	1.839	1.816	1.687	1.671		1.644	1.629	1.608	1.541		1.491		1.409	1.453	1.437	1.425
-	-		10	က	0	-		2	2	00	5	2	-	c	>	0	0	-
1.975	1.885		1.835	1.813	1.686	1.668		1.641	1.625	1.604	1.538	1.529	1.490	7.767	1.40/	1.450	1.436	1.423
4	က		9	13	9	-		7	7	-	. ∞		16	c	9	2		2
1.981	1.893		1.843	1.819	1.689	-		1.648	1.632	1.576	1.543		1.493	, ,	7/4/1	1.454		1.426
2	-	-	6	9	4 - 6	2 0	2	ကက	4 2		4 0	1	ი ო) -	-	-	-	-
1.982	1.898	1.877	1.842	1.819	1.690	1.668	1.659	1.646	1.631		1.542	2	1.493		4.	1.454	1.438	1.426

 ${\sf Table\ A2\text{--}4\ .\ Powder\ X\text{--}ray\ diffraction\ data\ of\ JCSS\text{--}3101\ montmorillonite\ from\ Tsukinuno.}}$

OUS	S	NMN	S-G	NMNS	-DN	NMNS	-DS	AIST	S	AIST	ΓG	U٦	Γ	NIM	S	KU	J
d	$\overline{I/I_0}$	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0
12.3		12.5	100	12.1	100	12.3	100	14.5		12.5	100	12.9	100	14.8	100	14.4	100
7.21	1			7.09	0												
6.22	8	6.24	4	6.17	7	6.22	6	6.16 5.14	3 6	6.25	6	6.26	5	6.19 5.19	3 5	6.22 5.19	3
4.49	8	4.47	47	4.46	14	4.48	23	4.48	24	4.48	0	4.51	35	5.07 4.49	4 13	4.49	
4.49	6	4.47	47	4.25	6	4.27	8	4.27	9	4.40	9	4.28	12	4.49	6	4.49	10
						3.90	2										
3.35	8	3.35	9	3.33	7	3.51 3.35	2 9	3.35	11	3.35	4	3.36	11	3.35	6	3.35	
3.13	43	3.13	11	3.13		3.14 3.03	34 4	3.10	44	3.13	18	3.13	24	3.11	23	3.11	2
2.57	3	2.57	12	2.55	4	2.56	7	2.57	8	2.57	3	2.58	11	2.57	4	2.58	
												2.53	9				
2.46	3	2.46	9	2.45	3	2.46	5			2.48 2.46	2 2			2.46	2	2.49	
2.29	2	2.28	2			2.28	2					2.28	3			2.28	
2.24	2	2.25	3	2.23	0	2.24	2					2.25 2.17	4			2.24	
				2.12	1	2.13	2	2.16	4			2.16 2.13	2				
2.08	4	2.09	2	2.07	2	2.08	2			2.07	2	2.12 2.09	3 3			2.08	
				1.974		1.982	1										
.820 .787	2 2	1.821	1	1.815 1.793	1	1.818	1					1.824	1			1.821	
696 544	2 2	1.695	5	1.690 1.540		1.694 1.541	3 1	1.695 1.542	3 2	1.697	2	1.697	4	1.693	2	1.697	
497	3	1.498	12	1.494	4	1.496	7	1.497	7	1.496	3	1.499	11	1.496	4	1.498	

mo	montmorillonite				mo	ntmo	rillor	nite		mo	ntmo	rillor	nite			kaoli	nite				qua	rtz		—
d	Ι	h	k	/	d	I	h	k	/	d	I	h	k	/	d	I	h	k	/	d	I	h	k	/
15.0	100	0	0	1	12.3	100	0	0	1	9.68	100	0	0	1		100			_					
					6.14	7	0	0	2						7.13	100	0	0	1					
5.00 4.49 4.30 4.30	3 2 1 1		0 2 1 2	3 0 1 1	4.45 4.37	8 5	0 -1	2	0 1	4.84 4.48	13 18	0	0 2	2	4.47 4.36	16 52	0 -1	2 1	0	4.26	20	1	0	0
					4.18 4.09 3.98	3 2 2	0 0 1	2 0 1	1 3 1	4.20 4.06	14 4	-1 0	1 2	1	4.18 4.13	46 23	-1 -1	-1 1	1					
3.85	2	-1	1	2	3.87 3.60	3	-1 0	1 2	2 2	3.92 3.44	4	1 -1	1	1 2	3.85 3.57 3.36 3.16	33 51 18 4	0 0 1 -1	-2 0 1 -1	1 2 1 2	3.34	100	1	0	1
3.00	1	0	0	5	3.07 2.81	2	0	0 1	4 3						3.10 2.74 2.57	5 7 5	-1 0 -2	1 2 0	2 2 1					
					2.55		-1	3	1	2.55 2.53 2.51	5 3	-2 -1 1	0 3 1	1 1 3	2.56 2.55 2.53	7 6 9	-1 1 -1	3 -3	0 0 1					
					2.47 2.45	3 1	1	3 0	1 5	2.46 2.42	7 5	1	3	1	2.50 2.49	10 10	-1 2	3 0	1	2.46	7	1	1	0
					2.44	3	-1	3	2	2.33 2.23		-1	3	2	2.35 2.33 2.29	18 18 23	-2 1 1	0 -3 3	2 1 1	2.28 2.24	6 3	1	0	2
										2.13	3	0	2	4						2.13	5	2	0	0
										2.10		-2	2	2	1.998		-2		3	1.980	2	2	0	1
										1.966	2	1	3	3	1.985 1.783	6 2	1	-3 0	2	1.818	13	1	1	2
										1.683 1.541 1.486	1 2 2	-2	1 4 3	0 3 0	1.706 1.541 1.490	2 2	2 -1 0		2 4	1.672 1.542 1.542	3 5 4	0 1 2	2 2 1	2 1 1

Table A2-5 . Powder X-ray diffraction data of JCSS-3102 montmorillonite from Mikawa.

OUS		NMNS		NMNS-		NMNS-	-DS	AIST		AIST	G	UT		NIM		KU		mo	ntmo	rillor	nite		mo	ntmor	illoni	ite	_
15.3		d	I/I_0	d	I/I_0	d	I/I_0	15.0	43	d	I/I_0	14.8	1/I ₀ 47	14.9	I/I ₀ 50	14.5	74	15.0	100		<i>k</i>		d	Ι	h	k	/_
10.06		12.7	87	12.6 9.96	42 18	13.4 9.96	35 7	10.03	4	12.7 10.03	71 8	10.12	4	10.05	12	10.07	14	10.0		Ů	Ů	·	12.3	100	0	0	1
9.02	6			9.41 8.90	2 5	9.35 8.92	2	8.95	4					9.03	3	9.04	8										
8.45	5											6 5 4	2														
6.52	5	6.45	4	6.46 6.38	3	6.61 6.45	3	6.51	4			6.54	3	6.48	3	6.51	3										
5.89 5.15	5 6	5.84	3	6.23 5.84	3 2	5.84	2	5.86	2	6.24	7	5.91	3										6.14	7	0	0	2
0.10	•			5.00	2													5.00	3	0		3			•		
4.49	42	4.47	44	4.47	39	4.47	41	4.49	41	4.47	42	4.50	41	4.49	41	4.50	42	4.49	2	0	2	0	4.45 4.37	8 5	0 -1	2	0
4.24	32	4.25	32	4.23	30	4.23	30	4.24	32	4.31 4.24	23 34	4.26	30	4.25	30	4.25	32	4.30 4.30	1		2		4.18	3	0	2	1
4.06	100	4.06	100	4.04	100	4.04	100	4.06	100	4.05		4.07	100	4.05	100	4.06	100						4.09 3.98		0		3
3.79	18	3.79	16	3.78	15	3.77	15	3.79	15	3.78	17	3.79	17	3.79	16	3.80	15	3.85	2	-1	1	2	3.87	3	-1	1	2
		3.65	9	3.64	7	3.63	7	3.66	8			3.64	7	3.64	11	3.65	8						3.60	1	0	2	2
				3.54	6	3.55	6					3.56	6										3.00		U	2	2
3.46	14	3.46	10	3.45	10	3.45	11	3.47	10	3.46	13	3.47	10	3.46	12	3.46	12										
3.35	41	3.34	20	3.34	39	3.34	37	3.35	92	3.34	34	3.36	28	3.35	33 20	3.35	33										
3.30	17			3.28	12	3.28	15	3.29	15	3.29	14	3.30	11	3.32 3.27	24	3.29	14										
3.22	31	3.22	26	3.21	43	3.21	30	3.22	23	3.21	36	3.23	24	3.22	34	3.22	26										
		3.16	17	3.17	40	3.18	23	3.18	22	3.18	22	3.19	13	3.18	23	3.19	18										
3.14 3.00		3.00	8	3.13 2.99	21 9	3.13 2.99	18 10	3.14 3.00	19 11	3.14 2.99	24 11	3.15 3.00	18 11	3.14 3.00	20 14	3.15 3.00	20 12	3.00	1	0	0	5	3.07	2	0	0	4
				2.94	5	2.93	5	0.00						0.00		2.93	6	0.00				•	,	_			
2.91 2.85		2.91 2.85	6 8	2.90 2.84	6 7	2.90 2.84	6 8	2.85	8	2.85	9	2.91 2.85	6 8	2.85	11	2.91 2.85 2.81	6 9 5						2.81	2	1	1	3
		2.77 2.71 2.66	3 3 2	2.76 2.71	3	2.76 2.71	3	2.76 2.71	4 3			2.77	4			2.77 2.72	4 3										
2.58	18	2.57	16	2.57	14	2.57	14	2.58	16	2.57	15	2.58	15	2.57	15	2.58	15										
				2.56	18					2.55 2.53	15 19												2.55	1	-1	3	1
2.49	26	2.49	24	2.49	22	2.49	24	2.49	24	2.50	32	2.49	23	2.49	24	2.49	25						2.47 2.45	3 1	1 0	3 0	1 5
				2.42	8	2.42	8	2.42	10					2.43	12	2.43	9						2.44		-1	3	2
2.38	9			2.39	5	2.39	5																				
		0.04	0	2.31	3	2.32	4	2.29	7							0.05	-										
		2.24	2	2.24 2.21	3 3	2.24 2.21	4 3	2.24	6							2.25	5										
2.17 2.13	8 9	2.17	2	2.17 2.14	4	2.17	5	2.17	5	2.14	13	2.17 2.13	5 4			2.17 2.13	5 7										
2.12	9	2.12	5	2.12	5	2.12	6	2.13	7	2.12	7		·	2.12	10		·										
2.02	7	2.02	3	2.06 2.02	2 2	2.06 2.02	2 3	2.02	4			2.03	4			2.02	5										
				1.96	1																						
1.931 1.874	7 6	1.932 1.877	3 3	1.928 1.870	3	1.928 1.870	3 3	1.930 1.875	6 4	1.928	5	1.927 1.878	5 3	1.930	4	1.931 1.878	3 3										
1.821	6			1.845 1.817	1 2	1.818	3	1.820	4	1.816	3	1.823	3			1.823	3										
1.795	6	1.794	2	1.791 1.773	3 1	1.791 1.777	2	1.794 1.756	3 2			1.798	3	1.793	6	1.796 1.779	2 4										
1.701	o	1 606	e	1.741	1			1.720	2 7	1 605	7	1.721	3 5	1.693	7												
1.673 1.656	8 7 8	1.696	6	1.691 1.673	5 4	1.691 1.674	5 4	1.692	,	1.685	7	1.699	Э	1.093	,	1.693 1.681	6 5										
1.632	7	1.634	4	1.631	3	1.632	4	1.630	5	1.011	-	1.636 1.627	3	1.015	•	1011	-										
1.613	8	1.615	4	1.611 1.562	4 1	1.611	5	1.613	5	1.611	7	1.611	4	1.615	6	1.614	5										
1.539 1.499	6 17	1.538 1.499	2 14	1.535 1.496	12	1.537 1.496	3 14	1.537 1.497	3 16	1.497	16	1.540 1.499	3 14	1.497	16	1.540 1.499	3 14										
1.434	7	1.434	3	1.453 1.432 1.404	1 2 1	1.458 1.432	7 3	1.434	5	1.432	4	1.437	2	1.430	5	1.434	4										

	itmo					musc			_		qua					cristol					anor					ortho				magne				
d	Ι	h	k	/_	d	Ι	h	k		<u>d</u>	Ι	h	k		<u>d</u>	Ι	h	k		<u>d</u>	Ι	h	k	/_	d	Ι	h	k	/_	d	I	h	k	/_
9.68	100	0	0	1	9.99	97	0	0	2																									
																				6.52	8	-1	1	0	6.61	5	1	1	0	9.04 8.43				
																				6.42 6.36	71 32		0	0 2	6.48 6.48	5 3	0	2 0						
																				6.24 5.78 5.66	2 7 21	-1	1 -1 1	0 2 2	5.87	9	-1	1	1	5.13	1	0	0	1
4.84 4.48	13 18	0	0 2		4.99 4.49	26 37	1	0	0											5.00 4.69	2 54	-1 0	-2 -2	1 2	4.58	2	0	2	1	4.91 4.52	16 13	-1 0	1 4	1 0
4.20	14	-1	1	1	4.46 4.40 4.30	98 12 26	0	1 2 1	1 1 1	4.26	20	1	0	0						4.36	9	0	2	2						4.21	4	2	2	0
4.06	4	0	2	1	4.11 3.97	23 11	0	2	2						4.04	100	1	0	1	4.15 4.04	1 14	0 -2	-3 0	1	4.22		-2 1		1	4.00 3.89		1 -1	1	
3.92	4	1	1	1	3.88 3.73	64 61	-1	1	3											3.78	20	-1	3	0	3.94 3.85 3.77	20 6 74	2	1 0 3		3.09	10	-1	3	'
																				3.67 3.62	18 46	1	3	0	3.61		-1	3	1					
3.44	4	-1	1	2	3.58 3.49	3 84	1 -1	1												3.60 3.51 3.46	19	-1 -1 -1	3	2 2 4	3.54		-2 -1		1					
					3.35 3.33	61 74	0		4	3.34	100	1	0	1						3.44 3.40 3.36	24	-2 -2 -1		2 2 4						3.39	35	1	3	1
3.29	2	0	2	2	3.33	/4	U	U	U												100	-2	2	0	3.31 3.29	100 58	2 -2	2	0 2	3.28	31	2	4	0
					3.20	79	1	1	4											3.21 3.20 3.18	15 91 73	0 -2 0	4 0 0	0 4 4	3.24 3.24	30 79	0	4 0						
					3.12 2.99	7 83	-1 0								3.13	9	1	1	1	3.12 3.04	75 30	2	2 -3	0	2.99	59	1	3	1	3.13 3.03	60 2	3 -3	1	0 1
					2.86	56	1	1	5						2 9.4	11	1	0	2	2.95 2.93 2.83	48 20 49	0	-4 -2 3	2 4 2	2.90 2.90	25 10	0	4 2	1 2	2.95 2.95	4 30	-1 2	5 2	1
					2.79	43									2.04			Ü	_	2.80		-1			2.77	21	-1	3	2	2.81 2.74		3 -3	3	0 1
					2.59	37	-1	3	1											2.66	35	-1	3	4	2.60	20	-3	1	2	2.71 2.63 2.60	76 1 46	1 -1 0	5 1 6	1 2 1
					2.59 2.57	19 14	2 1	0 1	0 6																2.57				1	2.57	3	0	0	2
2.55 2.53		-2 -1		1	2.57 2.56	59 100	-2 1	3	1											2.56 2.53 2.53	11 17 29	2 1 -2		2 4 2	2.55	9	1	1	2	2.55	54	-2	0	2
2.51 2.46	3 7	1	1	3 1	2.51 2.50	9	-1 0		7 8	2.46	7	1	1	0	2.49 2.47	14 4	2 1		0 2	2.51 2.50	11		-1	4	2.52 2.48	10 4	3	1	0					
2.42	5	0	0	4	2.46 2.45 2.40	25 13 17	2 -2	3 0 0	3 2 4																2.41	9	-1	5	1	2.45	1	-2 3	2	2
2.33	4	-1	3	2	2.38	40	1	3	3											2.32	14	-3	3	2	2.38	6	-1	3	3	2.34		-3	-	1
					2.25 2.21	10 10	-2 2	2		2.28 2.24	6 3	1	1	1											2.26	3	-3	3	2	2.29	17	-3	1	2
0.40	0	•	•		2.18 2.15	22	-2 -2	2	3 6											2.14	22	2	-4	2	2.16	23 10	0	6	0	2.17	33	2	6	1
2.13 2.10		0 -2	2	4 2	2.13 2.06 2.03	47 11 4	1 0 -2		5 4 5						2.02	3	2	0	2	2.14 2.09 2.02	21	0 1 -4	5	0 2 2	2.11		-4 -4	2	2	2.05 2.02			0 5	
1.966	2	1	3	3	1.997	35 25		3							1.020	_			2	1 000	10	4	0	4	1.971	12			2	2.02	11	-4	0	2
					1.951 1.867 1.847		2 0 -1	4	6 6 8						1.929 1.871			1		1.932 1.845	10	-4 -4		4	1.923	- 11	4	U	U					
					1.826	1	0	2	10	1.818	13	1	1	2						1.836 1.796		1			1.802	22	-2	0	4					
					1.731	14	-1	3	9											1.769	24	-2	U	8										
1.644			4		1.663 1.648	40		0 3 5	9																					1.652	24	4	6	1
1.630		-2	4	2	1.629 1.617	10	−1 −3	1	4 5																					1.620	10	1	11	0
1.561	2	2 -2	4	3	1.559 1.525	22	3 -1		11																1 402	20	0	0	0	1.586 1.538		-1 -6		
1.486 1.465	2	3 0	3 4	0 5	1.502	50	- 3	3	1											1.455	10	0	6	6	1.493	20	2	ď	U	1.441	26	-6	6	1
1.403	1	-1	3	6																														

Table A2-6. Powder X-ray diffraction data of JCSS-3501 synthesizes saponite.

	_	-	က	0									œ		0	0	0	0	0
)	×	0	0	7	_	0	0	0	က	7	4	7	0	2	_	9	က	9	0
ite	4	0	0	0	_	0	0	0	_	7	0	7	0	-	က	0	က	7	4
saponite	<i>4 I</i>	100	20	Ö	0	40	10	40	Z Z	3	Ç	2	10	20	5	0	20	L	20
0,	ρ	16.6	4.94	7		3.70	3.21	2.89	0 50	7.30	900	7.70	2.06	1 79	7/:1	1 50	20.1	5	
	I/I_0	100		C C	20		22		35	S				7	`	30	S		
KU	ρ	14.0		V E	4.09		3.18		0 61	7.01				1 72/	- 1	1 500	700.1		
(0	I/I_0	100		6	7/		32		9	,				<u>г</u>	2	7	ò		
NIMS	ρ	14.2		737	t.0.		3.16		0 60	7.30				1 790	671.1	1 500	070.1		
	I/I_0	100		7			28		C C	3	17	2		1.0	7	0	9		
UL	ρ	13.9		V F0	4.30		3.18		9 50	60.7	0 21	7.01		1 721	2	1 500	1.029		
g	I/I_0	100		C L	60		22		20	60	10	0		-	=	42	5		
AISTG	ρ	12.8		N F	4.30		3.18		0 60	7.00	000	7.30		1 790	671.1	1 500	1.029		
S	I/I_0	86			3		32		77	†				10	2	6	90	c	22
AISTS	ρ	14.1		V I	4.09 80.4		3.18		9 50	60.7				1 722	20.	1 500	1.023	010	0.5.1
NG-S	I/I_0	100		0	60		21		S	2	10	5		13	2	7.0	2		
-SNWN	ρ	11.1		V	4.04		3.17		9 57	7.7	000	7.70		1 79.4		1 505	0.70.1 /1 100.1		
<u>–</u> G	I/I_0	100		c	67		7		1.0	2	_			c	כ	17	-		C
NWN	d d I/I_0 d d I/I_0 d	13.9			4.30 23		3.32		096	7.00	9 21	7.01		1 799				1 0 1 7	۱.۵۱/
_	I/I_0	100		5	- -		47		7.1	-				00	77	77	+		
SNO	ρ	12.0		V F	4.30 %		3.17 47		0 50	2.30				1 707 00	1771	1 506	1.320		

Fig. 1-A . Powder X-ray diffraction patterns.

Fig. 1-B . Powder X-ray diffraction patterns

Fig. 1-C . Powder X-ray diffraction patterns

Table A2-7 . Powder X-ray diffraction data of JCSS-5101 sericite from Nabeyama.

OUS		NMNS	5-G	NMNS-	-DN	NMNS-	-DS	AIST	S	AIST	「G	UT		NIM		KU	
d	I/I_0	13.3	I/I ₀	14.0	1/I ₀	14.2	1/I ₀	d	I/I_0	d	I/I_0	d	I/I_0	d	I/I_0	14.3	I/I ₀ 5
10.0 7.11 5.01	79 9 56	9.99 7.06 4.99	52 7 19	9.80 6.98 4.94	94 7 44	9.94 7.06 4.98	96 10 64	9.96 7.06 4.98	69 8 49	10.03 7.09 4.99	76 8 48	10.07 7.12 5.02	95 14 49	10.06 7.09 5.01	100 9 43	9.98 7.08 4.99	100 9 42
4.50	5	4.48	85	4.44	1	4.47	5	4.49	6	4.48	16	4.51	98	4.49	14	4.49	2
4.27	4	4.26	22	4.22	5	4.25	7	4.28 4.25	5 10	4.26	7	4.29	19	4.27	23	4.26	7
		4.12	8	4.20 3.83	5 2	4.11	1					4.13	12	4.10	4		
3.89 3.86	2	3.88	14			3.88	2	3.88	2	3.88	4	3.90	22	3.87	5	3.87	1
3.74 3.67	3	3.73	17			3.73 3.65	3 2	3.73 3.67	3 2	3.73	5	3.75 3.66	27 21	3.74	7	3.74	2
3.54 3.51	7 5	3.51	15	3.51	5	3.53 3.49	8 5	3.53 3.50	8 5	3.53	9	3.51	29	3.54 3.51	8 8	3.54	4
3.33	100	3.34	100	3.30	100	3.32	100	3.32	100	3.33	100	3.35	100	3.33	80	3.33	66
3.21 3.07	7 5	3.20	14	3.19	4	3.20	7	3.20	6	3.20 3.07	9 6	3.21 3.08	30 24	3.20 3.07	11 7	3.20	4
3.04	13	3.03	17	3.01	7	3.03	12	3.03	10	3.03	10	3.05	54	3.04	18	3.04	7
3.00	8	2.99	18	2.97	4	2.99	8	2.99	7	3.00	11	3.00	39	2.99	11	2.99	4
2.87 2.81 2.79 2.71	5 4 5 2	2.86 2.80	10 8	2.85 2.78	2	2.86 2.79	5 4	2.86 2.80	5 3	2.87 2.80	7 5	2.87 2.80 2.79	21 20 21	2.87 2.80	6 5	2.86 2.79	3
2.69	2			2.69	3	2.70	2	2.70	2			2.69	6			2.68	1
2.60	3					2.59	4	2.59	4	2.59	6	2.60	56	2.59	6	2.59	2
2.57	6	2.57	96	2.55	3	2.56	10	2.57	8	2.57	12	2.57	109	2.57	18	2.57	4
2.50	12	2.49	8	2.48	11	2.49	11	2.50	12	2.50	13	2.50	23	2.50	11	2.50	8
2.46	6	2.46	22	2.44	2	2.46	2	2.46	4	2.47	4	2.47	29	2.46	6	2.47	2
2.39	2	2.39	26	2.37	1	2.38	4	2.38	2	2.38	5	2.39	30	2.38	5	2.38	2
2.29	2	2.28	7	2.27	1	2.28	1	2.28	1	2.28	2	2.29	9			2.28	2
2.26	1	2.25	14	2.24	0	2.25	1	2.25	1	2.25	2	2.26	15				
		2.21	9	2.20	0	2.20	1	2.24	2			2.21	11				
2.16	2					2.15	4	2.13	5	2.13	4	2.14	32	2.15	5	2.15	2
2.13	7	2.13	25	2.12 2.12	4 3	2.13	5					0.10	7	2.13	9	2.13	2
2.10	2			2.08	1	2.09	1					2.10 2.06	7 5	2.09	3	2.09	1
2.00 1.991	40 1	1.996	22	1.986	42	1.993	33	1.994	40	1.995	40	1.998	40	1.996	33	1.995	25
		1.970 1.955	10 6			1.950	2					1.974 1.959	15 11	1.951	4		
		1.000	Ü	1.903	1	1.906	2			1.910	2	1.912	7	1.911	2	1.910	2
1.875	2			1.865	1	1.871	1	1.871	1	1.874	2	1.875	10	1.875	2	1.874	1
1.819	1	1.819	9	1.810 1.765	1	1.817	1	1.816	1	1.818	2	1.821 1.770	4 3	1.820	5	1.818	1
1.735 1.714	2	1.734 1.730	3 2	1.726	1	1.728	1	1.727	2	1.729	2	1.732	9	1.729	3	1.729	1
1./14	2	1.700	6									1.704	9				
1.661	4	1.660	14	1.656	2	1.659	4	1.659	5	1.662	6	1.662	17	1.660	7	1.661	2
1.647 1.630	5 2	1.647 1.630	15 8	1.642	2	1.646	5	1.647	5	1.646	7	1.649	25	1.649	7	1.648	2
1.000	-	1.603	4	1.597	0	1.601	1			1.603	2	1.604	8				
1.543	2	1.557 1.543	5 8	1.555	0	1.553 1.541	1 2	1.541	2	1.541	4	1.559 1.545	4 6	1.542	3		
1.524	3	1.522	7	1.536 1.517	1 2	1.521	2	1.523	4	1.520	4	1.524	9	1.520	4	1.522	2
1.511 1.504	3	1.503 1.484	40 6	1.501	1	1.501	4	1.499	3	1.502	4	1.504	45	1.503	6	1.503 1.483	2
																1.479	1
1.454 1.426	2	1.455 1.425	3 2	1.449	1	1.451 1.424	1 2	1.452 1.423	2	1.425	3			1.455 1.423	2	1.452 1.425	1 2
		1.421	2	1.421	2				•		-						

	muscovite	е			calc	ite				quai	rtz				kaoli	inite			c	linoc	hlore	;	_
d	I h	k		d	Ι	h	k	/	d	Ι	h	k	/	d	Ι	h	k	/	14.32	<i>I</i>	<i>h</i>	<i>k</i>	1
9.99	97 0	0	2											7.13	100	0	0	1	7.16	69	0	0	2
4.99 4.51 4.49 4.46 4.40	26 0 7 0 37 1 98 -1 12 0	0 2 1 1 2	4 0 0 1 1											4.47	16	0	2	0	4.78 4.52		0 -1		3
4.30	26 1	1	1						4.26	20	1	0	0	4.36		-1	1	0	4.40	13	0	2	1
4.11 3.97	23 0 11 1	2	2											4.18 4.13	46 23		-1 1	1					
3.88	64 -1	1	3	3.85	8	0	1	2						3.85	33	0	-2	1					
3.73	61 0	2	3											3.73	15	0	2	1					
3.58	3 1 84 -1	1	3 4						2.24	100	1	0	4	3.57	51	0	0	2	3.58 3.50	49 10	0 -1	0 1	4 3
3.35 3.33 3.20	61 0 74 0 79 1	2 0 1	4 6 4						3.34	100	1	0	1	3.36	18	1	1	1	3.32	10	0	-2	3
3.12	7 -1	1	5	3.04	100	1	0	4															
2.99 2.86 2.79	83 0 56 1 43 -1	2 1 1	5 5 6	2.84	2	0	0	6											2.87	9	0	0	5
																			2.65 2.65	12 13	-1 2	3	1
2.60 2.59 2.59 2.57 2.57 2.56	5 1 37 -1 19 2 14 1 59 -2 100 1	3 0 1 0 3	0 1 0 6 2																				
2.51	9 -1 9 0	0	7 8	2.49	14	1	1	0	0.46	7		1	0	2.50 2.49	10 10	-1 2	3 0	1 0					
2.46 2.45 2.40	25 -1 13 2 17 -2	3 0 0	3 2 4						2.46	7	1	'	U	2.35	18	-2	0	2	2.39	32	-1	3	3
2.38 2.25 2.24 2.24 2.23	40 1 10 -2 4 2 5 0 9 -1	3 2 2 4 3	3 1 0 1 5	2.28	19	1	1	3	2.28 2.28 2.24	1 6 3	0 1 1	1 0 1	2 2 1	2.33 2.29	18 23	1		1	2.39	34	2	0	2
2.21 2.20 2.18 2.15 2.15 2.14 2.13 2.07 2.06	10 2 4 2 6 0 10 -2 4 2 22 -2 4 0 47 1 7 2 11 0	2 0 4 2 2 0 4 3 2 4	1 4 2 3 2 6 3 5 3 4	2.09	15	2	0	2	2.13	5	2	0	0										
1.997 1.984	35 0 1 2	0 2	10 4						1.980	2	2	0	1						2.01 2.01	13 13	-1 2	3 0	5 4
1.971 1.951 1.893 1.876	25 -1 13 2 2 -2 3 1	3 0 0 3	7 6 8 7	1.912 1.875	20 20	0	1	8 6	1.818	13	1	1	2										
1.769 1.736 1.731 1.713 1.700 1.663 1.648 1.629 1.602 1.602 1.559	2 0 2 -1 14 -1 6 2 5 2 19 -2 40 1 12 -1 9 -2 4 2 9 3	4 1 3 0 4 0 3 5 4 2 1	7 11 9 8 0 10 9 4 5 8	1.604	10	1	2	2											1.674 1.674	11 10		3	7 6
1.549 1.537 1.525 1.510	3 1 5 -1 22 -1 10 2	5 5 3 0	5 6 11 10	1.525 1.509	6	2	1	4 9	1.542 1.542	5 4	1	2	1						1.541 1.541	12 12	-3	6	0
1.504 1.482	24 0	6	0		J			J															
1.475 1.454	4 2 4 0	4 2	6 13	1.473	2	1	2	5															
1.427 1.416	2 0 2 1	0 1	14 13	1.422	4	0	0	12															

Table A2-8 . Powder X-ray diffraction data of JCSS-5102 cleaved sericite from Nabeyama.

		-8 . PO															
OUS	$\frac{S}{I/I_0}$	NMNS d	$\frac{S-G}{I/I_0}$	NMNS:	$\frac{-DN}{I/I_0}$	NMNS-	$\frac{-DS}{I/I_0}$	AIST	$\frac{S}{I/I_0}$	AIST	$\frac{G}{I/I_0}$	UT	I/I_0	NIM d	$\frac{S}{I/I_0}$	KU	I/I_0
14.3	4			14.1	1	14.0	1	14.2	1	14.3	2	14.5	2	14.3	2	14.0	1
10.02 7.10	80 11	10.00 7.09	55 9	9.98 7.09	88 11	9.96 7.08	100 12	9.87 7.04	73 11	9.98 7.08	100 13	10.07 7.13	100 17	10.04 7.09	100 14	9.94 7.06	100 11
5.00	42	5.00	22	4.99	45	4.99	45	4.97	44	4.99	43	5.02	39	5.01	41	4.97	38
4.73	1			4.72	1	4.71	1									4.72	1
4.50	2	4.49	90	4.49	1	4.48	3	4.47	1	4.49	3	4.52	58	4.50	4	4.47	1
												4.00					
												4.38	11				
4.27	2			4.25	1	4.25	1	4.24	1	4.25	2	4.27	10	4.26	2	4.24	1
		4.11	11			4.12	1					4.14	8				
3.74	1	3.88 3.73	17 22	3.87 3.73	1	3.89 3.74	2	3.73	1			3.90 3.75	13 16	3.87 3.73	2		
3.67	i	3.67	18	3.73	'	3.66	2	3.73	'			3.67	12	3.73	J		
3.58	3					3.57	3					2.54	10				
3.54	8	3.50	22	3.54	8	3.53 3.49	8 4	3.53	8	3.54	8	3.54 3.51	16 17	3.54	8	3.53	6
3.33	100	3.34	77	3.33	100	3.32	78	3.31	100	3.33	85	3.34	86	3.33	83	3.32	74
														3.21	5		
3.20	3	3.20	19	3.21	3	3.20	4	3.21	3	3.20	4	3.21	17	3.13	3		
3.04 3.00	6 3	3.03 3.00	31 26	3.03 3.00	6 3	3.03 2.99	8 6	3.02 2.99	7 4	3.03 3.00	7 4	3.04 3.00	28 21	3.04 3.00	8 5	3.03 2.99	4 2
						2.93	2							2.94	2		
2.86	2	2.87	14	2.86	2	2.86	3	2.85	3	2.86	4	2.88	14	2.86 2.84	4 3	2.85	1
2.80	2	2.80	11	2.79	2	2.80	3	2.80	2	2.80	3	2.81	10	2.80	3	2.80	1
2.68	1	2.68	5	2.68	0	2.68	1	2.68	1			2.69	3				
2.59	1			2.59	1	2.59	3					2.60	31	2.59	2		
2.57	2	2.57	100	2.57	2	2.57	7	2.56	2	2.57	5	2.58	62	2.57	7	2.56	1
2.50	10	2.50	14	2.49	10	2.49	7	2.49	9	2.50	9	2.50	11	2.50	9	2.49	7
							_										
2.46	1	2.46	20	2.46	1	2.46	2					2.47	12			2.45	1
2.37	1	2.39	33	2.38	1	2.39	3	2.38	1	2.39	2	2.40	17	2.39	3	2.39	0
2.07	•	2.00	00	2.00	·	2.00	Ū	2.00	·	2.00	-	2.10	.,	2.00	Ü	2.00	Ū
2.29	1	2.28	6	2.28	1	2.28	1	2.28	1			2.29	4	2.29	2	2.28	1
						2.25	1										
		2.25	14			2.24	1					2.26	8	2.26	2		
						2.2.1											
		2.21	10			2.21	1					2.21	6				
						2.15	2	2 1 4	1					2.15	2		
2.13	1	2.14	27	2.13	1	2.15	3	2.14	'	2.13	3	2.14	16	2.15	2	2.13	1
0.00		0.00		0.00		2.13	3	2.13	1			0.10		2.13	2	0.00	
2.09	1	2.09	4	2.09	1	2.09	1	2.09	1			2.10 2.08	4			2.09	1
		2.07	3									2.06	3				
4 000	0.0	2.03	3	4 00 4	00	1 000		1 000		4 005		1 000	07	1 000	0.4	4 000	
1.996	36	1.997	24	1.994	39	1.993	22	1.992	38	1.995	33	1.999	27	1.996	31	1.992	26
		1.973	11			1.952	2					1.978	8				
1.911	1	1.910	3	1.907	1	1.908	1	1.906	1			1.913	2			1.906	1
1.874 1.819	1 1	1.874 1.819	5 5	1.872 1.817	1	1.870 1.817	1	1.867 1.814	1 1	1.872	1	1.878 1.823	3 2	1.819	2	1.872	1
1.732	i	1.728	5	1.729	ó	1.730	1	1.014	'			1.733	3	1.013	2	1.729	0
		1.700	6									1.704 1.687	4				
		1.664	15	1.660	2	1.659	3	1.659	2	1.661	2	1.007	3	1.663	4	1.659	1
1.648	2	1.649	20	1.647	2	1.647	4	1.646	2	1.647	3	1.650	13	1.648	4	1.647	1
1.633 1.604	2 1	1.631 1.603	11 6	1.601	0	1.599	1					1.602	5				
		1.556	5			1.554	1					1.559	4				
1.542	1	1.542	5	1.541	0	1.541	1					1.541	3				
1.522	2	1.523	8	1.521	1	1.519	2	1.519	2	1.522	2	1.524	8	1.523	3	1.519	1
1.511	1									1.507	2	3 50 7	-				
1.502	1	1.504	41	1.501	1	1.503	4			1.503	2	1.504	25	1.505	4		
1.456	1			1.452	1	1.453	1	1.454	1					1.452	2	1.454	1_

	muscovi	te		_		calc	ite				qua	rtz				kaol	inite				linocl	hlore	Э	_
d	I h	k		/	d	Ι	h	k	/	d	Ι	h	k	/	d	Ι	h	k	/	14.32	<i>I</i>	<i>h</i>	<i>k</i>	1
9.99	97 () (0	2											7.13	100	0	0	1	7.16	69	0	0	2
4.99 4.51	26 C		0 2	4																4.78 4.52	58 24	0 -1	0	3
4.49 4.46	37 1 98 -1		1 1	0											4.47	16	0	2	0	4.32	24	•	'	'
4.40 4.30	12 0 26 1		2 1	1											4.36	52	-1	1	0	4.40	13	0	2	1
4.11	23 (, ,	2	2						4.26	20	1	0	0	4.18 4.13		-1 -1	-1 1	1					
3.97 3.88	11 1 64 -1		1	2	3.85	8	0	1	2						3.85	33	0	-2	1					
3.73	61 (2	3											3.73	15	0	2	1					
3.58 3.49	3 1 84 -1		1	3											3.57	51	0	0	2	3.58 3.50	49 10	0 -1	0	3
3.35 3.33	61 0) ;	2 0	4 6						3.34	100	1	0	1	3.36	18	1	1	1	3.32	10		-2	3
3.20 3.12	79 1 7 -1		1 1	4 5											3.16 3.10		-1 -1	-1 1	2					
2.99	83 () :	2	5	3.04	100	1	0	4															
2.86	56 1		1	5	2.84	2	0	0	6											2.87	9	0	0	5
2.79	43 -1			6											2.74	7	0	2	2	2.65		-1	3	1
2.60 2.59 2.59	5 1 37 -1 19 2	;	3 3 0	0 1 0																2.65	13	2	0	0
2.57 2.57	14 1 59 -2	2 (1	6 2											2.57 2.56	7		0 3	1 0					
2.56 2.51	100 1 9 -1		3	1 7											2.55 2.53 2.51	6 9 5	1 -1 1	3 -3 -1	0 1 2					
2.50	9 (0	8	2.49	14	1	1	0						2.50 2.49	10 10	-1 2	3	1					
2.46 2.45	25 -1 13 2	2 (3	2						2.46	7	1	1	0	2.48	2	1	1	2					
2.41 2.40 2.38	4 0 17 -2 40 1	2 (2 0 3	7 4 3											2.38	7	0	0	3	2.39 2.39	32 34	2	3 0	3 2
															2.35 2.33	18 18	-2 1	-3	2 1					
2.26 2.25	1 0 10 -2		4	0	2.28	19	1	1	3	2.28 2.28 2.24	1 6 3	0 1 1	1 0 1	2 2 1	2.29 2.25	23 2	1 -1	-3	1 2					
2.24 2.24	4 2	2 2	2	0						2.24	J		'											
2.23	9 -1	2 :	3	5 1											2.19		-1	3	2					
2.21 2.20 2.18	4 2 6 0 10 -2) 4	0 4 2	4 2 3											2.18	1	2	0	1					
2.15 2.15	4 2 22 -2	2 (2	6						2.13	5	2	0	0										
2.14 2.13	4 (47 1		4 3	3 5	2.09	15	2	٥	2						2.13	2	0	-2	3					
2.07 2.06	7 2 11 0) 4	2 4	3 4	2.00		-	,	-						2.06	1	-2	2	2					
2.03 1.997	4 -2 35 0 1 2) (2 0 2	5 10 4						1.980	2	2	0	1	1.998		-2 1		3	2.01	13 13	-1 2	3	5 4
1.984 1.971 1.951	1 2 25 -1 13 2		2 3 0	4 7 6						1.980	2	2	U	'	1.985 1.948	6	2	-3 2	2	2.01	13	2	U	4
1.876	3 1	;	3	7	1.912 1.875	20 20	0 1	1	8 6					_										
1.826 1.731 1.700	1 0 14 -1 5 2		2 3 4	10 9 0						1.818	13	1	1	2	1.830	2	2	0	2					
1.674 1.663	3 -2 19 -2	2 (4 0	3 10						1.672	3	0	2	2	1.669 1.659	5		0 -3	4	1.674 1.674	11 10	-1 2	3	7 6
1.648	40 1 12 -1		3 5	9	1.625	3	2	1	1						1.648	2	-3	1	2					
1.602 1.596 1.537	9 -2 5 1 5 -1		4 5 5	5 4 6	1.604	10	1	2	2	1.542	5	1	2	1	1.587 1.541	2	-1 -1	-3 3	4	1.541	12	0	6	0
1.529 1.525	3 2 22 -1	2 4	4 3	5 11	1.525	6	2	1	4	1.542	4	2	1	i	1.532	2		0	3	1.541	12		3	1
1.510 1.504 1.502	10 2 24 0 50 -3) (10 0 1	1.509	3	1	1	9															
1.455	6 1		3							1.453	2	1	1	3	1.457	1	-3	3	2					

Fig. 2 . IR spectra.

Table A3 . Absorption peak positions in IR spectra.

	JC	SS1101	lb kaolinit	te				JCS	S1301			
NMNS	AISTG	HU	JIRCAS ⁷	')			NMNS	AISTG	HU	JIRCAS ⁷)	
432.0	427.6	425.2	2	Kao			427.2	426.7	423.3			
472.5	467.7	464.8	3	Kao	Alu	Qtz	470.5	473.4	462.8			Qtz
540.0		533.2	2	Kao		0.	539.0	544.3	530.3			٥.
597.8		638.3	3		Alu	Qtz						Qtz
							669.2		675.9			
694.2	689.4	681.7		Kao		Qtz	693.3	694.2				Qtz
754.0	753.5	752.1		Kao			754.0	755.5	750.2			
789.7	797.4	793.6		Kao	Alu	Qtz	795.5	796.0	793.6	794		Qtz
			796			Qtz						Qtz
914.1	912.6	913.1	910	Kao			913.1	913.1	909.3	910		
939.2	940.6	0.0		Kao			934.3	932.9	931.4			
000.2	0.0.0						000	002.0				
1010.5	1006.7	1008.6	1003	Kao			1001.8	1000.4	998.9	995		
1033.7			1026		Alu			1034.6				
1097.3						Qtz						Qtz
	1116.1	1114.7	7 1115	Kao	, 110	G 02	1118.5	1120.9	1117.5	1117		G CL
	1821.9							1829.6				
	1928.5											
3483.8	3484.3	3483.9	₹		Alu							
	3512.7				Alu							
3566.7	0012.7	3570.6										
	3620.7			Kan			3621.7	3622.1	36226	3620	Dic	
	3653.5						0021.7	0022.1	0022.0	3627	טוט	
	3667.9	0002.0	3668				3650.6	3649.6	3643.9		Dic	
	3694.0	3687.2						3700.7				
0002.1	3034.0	3007.2	. 0007	itau			0700.7	3700.7	3007.0	0000	210	

Kao: Kaolinite, Alu: Alunite, Qtz: Quartz, Dic: Dickite, Pyr: Pyrophyllite, Mmr: Montmorillonite, Spn: Saponite, Msc: Muscovite, Cal: Calcite

Table A3.(continued)

	JCSS2	2101 pyı	rophyllite	JC	SS3101	montm	orillonite	JC	SS3102	montmo	rillonite
NMNS			JIRCAS ⁷⁾	NMNS	AISTG	HU	JIRCAS ⁷⁾	NMNS	AISTG	HU ,	IIRCAS ⁷⁾
418.5	418.0	418.5				452.2	. Mmr				Mmr
460.9		457.0	•	466.7	469.1		Mmr	469.6	468.6	460.9	Mmr
482.1	482.1	472.5	•								
518.8		520.7		521.7	522.6	519.7		524.5	519.2	514.9	Mmr
540.0		535.1					Mmr				Mmr
570.8			Pyr Qtz								
622.9	624.8 667.7		Pyr	625.8			Mmr	622.9	619.5	621.0	Mmr
694.2		696.2	696 Qtz					692.3			
738.6		740.5						002.0			
779.1		, 10.0	779 Qtz								
799.3		806.1		797.4	8.008		798	795.5	796.5	794.5	795
811.9			810 Pyr								
835.0		835.0		845.6	846.1		847 Mmr	838.9	840.8	841.8	837 Mmr
852.4		854.3					854				
			•				885				
				914.1	917.5	915.1	912 Mmr	914.1	914.6	917.0	912 Mmr
948.8	949.8	945.9	943 Pyr								
			1022				985 Mmr	1013.4			999 Mmr
1052.0		1043.3		1040.4					1037.0	1021.1	
	1064.5				1108.4	1108.9	1113 Mmr	1084.8			1109 Mmr
1121.4	1120.9	1122.4	1119 Pyr						1121.4		
	1888.9								1105.0		1100
									1195.2		1198
					1.4EC E				1396.7 1448.8		
				1620.2	1456.5 1635.3	1640 0	1635	1620.2	1632.9	1640.2	1635
				1030.2	1844.1	1040.0	1035	1030.2	1877.8	1040.2	1033
					1942.4				1077.0		
					1042.4				2905.7		
					2926.9	2921.6			2979.5		
				3475.1	3445.7		3438	3483.8	3444.2		3400
				3629.4	3628.4	3622.6	3622 Mmr	3620.7	3622.1	3622.6	3622 Mmr
3674.7	3675.2	3671.8	3674 Pyr								
						3748.0	1	3692.1			

 $\textbf{Kao: Kaolinite, Alu: Alunite, Qtz: Quartz, Dic: Dickite, Pyr: Pyrophyllite, Mmr: Montmorillonite, Pyr: Pyrophyllite, Pyr: Pyrop$

Spn: Saponite, Msc: Muscovite, Cal: Calcite

	JCSS3	01 sapo	nite		JCS	S5201 se				JCS	S5202 se	ericite	
NMNS	AISTG	HU .	JIRCAS ⁷⁾	NMNS	AISTG	HU J	IRCAS ⁷⁾	_	NMNS	AISTG	HU .	JIRCAS ⁷⁾	
446.4 465.7	445.5	438.7	Spn Spn	418.5	418.0	458.0	Msc	;	416.5	413.2	413.7	Msc	
400.7			Орп	471.5	473.4		Msc	;	470.5	472.0	465.7	Msc	
535.1 620.0			Spn	530.3	534.2	519.7	Msc Msc Msc	;	528.4	530.3	521.7	Msc Msc Msc	
667.2		657.6	658 Spn				IVISC		689.4	689.4	697.1	IVISC	
		715.5	Spn	689.4 750.2	685.6 753.5	749.2	748	Cal	752.1	753.1	750.2	750	
		803.2	802 Spn		802.7		802		800.3	801.3		802	
				824.4	831.2	821.5	820 Msc	;	826.3	832.6	824.4	823 Msc	
				913.1	912.2	911.2	874 906 Msc	Cal	914.1	913.1	918.9 985.4	876 908 Msc 976	Cal
10115	1012.4	972.9	966			981.6	976						
1011.5 1031.7 1099.2			Spn Spn 1090	1028.8	1027.4		1066 Msc Msc		1026.9	1026.9		1064 Msc Msc	
					1418.9 1635.3		1431	Cal	1435.7	1436.7	1454.1	1446	Cal
1651.7	1633.4	1641.1	1635										
	2069.2 2857.5	2855.1											
		2931.3 3422.1	3410	3446.2	3434.1				3461.6	3419.7			
3503.1													
3619.7 3648.7		3623.6		3629.4	3628.4	3622.6	3622 Msc	;	3619.7	3628.4	3622.6	3620 Msc	
3690.1	3673.2	3672.8	3670 Spn										
				3735.4		3747.0					3746.0		

Fig. 3 . DTA and TG curves.

Table A4. Temperature of endothermic and exothermic reactions and weight loss

NIMANIC		b kaolinite	UT
NMNS Peak Weight	AISTS Peak Weight	AISTG Peak Weight	UT Peak Weight
position (°C) Reaction loss (%) -0.82	position (°C) Reaction loss (%) 37.6 Endo0.57	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)
548.9 Endo13.34 759.8 Endo2.11 -0.89	518.7 Endo. −13.26	545.0 Endo. −11.9	535.4 Endo15.57 -0.94 -1.06
999.8 Exo.	981.6 Exo.	998.0 Exo.	997.4 Exo.
NIMANO		01 dickite	LIT
NMNS Peak Weight	AISTS Peak Weight	AISTG Peak Weight	UT Peak Weight
position (°C) Reaction loss (%) -0.33	position (°C) Reaction loss (%)		position (°C) Reaction loss (%)
545.4 Endo13.64	538.4 Endo5.78	563.0 Endo8.1	549.3 Endo14.01
661.7 Endo. 996.5 Exo. 0.00	641.1 Endo7.04 977.2 Exo.	665.0 Endo4.1 996.0 Exo.	660.1 Endo. 993.5 Exo.
		pyrophyllite	
NMNS	AISTS	AISTG	UT
Peak Weight position (°C) Reaction loss (%) -0.32	Peak Weight position (°C) Reaction loss (%)	Peak Weight position (°C) Reaction loss (%)	Peak Weight position (°C) Reaction loss (%) -0.26
644.2 Endo4.52	573.4 Endo5.05 913.2 Endo.	587.0 Endo4.1	645.8 Endo4.98
		ontomorillonite	
NMNS	AISTS	AISTG	UT
Peak Weight position (°C) Reaction loss (%)	Peak Weight position (°C) Reaction loss (%) 60.0 Endo6.37	Peak Weight position (°C) Reaction loss (%)	Peak Weight position (°C) Reaction loss (%)
108.5 Endo8.78	90.8 Endo7.79	103.0 Endo9.5	93.9 Endo. −10.77
616.0 Endo4.29	659.9 Endo5.88	681.0 Endo3.2	673 Endo4.72
764.8 Endo. −1.19			755.9 Endo. −1.46
		ontmorillonite	
NMNS Peak Weight	AISTS Peak Weight	AISTG Peak Weight	UT Peak Weight
position (°C) Reaction loss (%)	position (°C) Reaction loss (%) 56.7 Endo5.39	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)
109.6 Endo9.56	84.3 Endo4.88	96.0 Endo7.6	93.5 Endo7.73
459.3 Endo0.71	600.0 51- 1.06	469.0 Endo0.3	466.3 Endo1.20
648.6 Endo. –2.58	600.0 Endo1.86	637.0 Endo. –2.0	640.5 Endo. –2.75
NIMNIC		1 saponite	UT
NMNS Peak Weight	AISTS Peak Weight	AISTG Peak Weight	UT Peak Weight
position (°C) Reaction loss (%)	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)
100.1 Endo8.96	76.0 Endo. −17.23	91.0 Endo. −12.2	89.9 Endo16.53
762.1 Endo5.49	777.0 Endo2.93	763.0 Endo1.0	763.1 Endo. –5.73
792.5 Endo.		798.0 Endo. −2.2	797.7 Endo.
NMNS	JCSS510 AISTS	1 sericite AISTG	UT
Peak Weight	Peak Weight	Peak Weight	Peak Weight
position (°C) Reaction loss (%)	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)	position (°C) Reaction loss (%)
51.2 Endo1.17	42.2 Endo0.43	650 O E 4.0	44.9 Endo0.83
667.0 Endo5.67 1090.5 Endo.	621.9 Endo4.83	658.0 Endo4.6	663.3 Endo. –6.42 1113.0 Endo.
NIMANIC	JCSS510		UT
NMNS Peak Weight	AISTS Peak Weight	AISTG Peak Weight	UT Peak Weight
position (°C) Reaction loss (%) 59.8 Endo1.25	position (°C) Reaction loss (%) 45.8 Endo0.94	position (°C) Reaction loss (%)	position (°C) Reaction loss (%) -1.15
637.8 Endo6.04	630.0 Endo5.51	510.0 Endo5.6	654.8 Endo8.84 1111.8 Endo.

Fig. 4 . SEM photomicrigraphs.

Fig. 5 . AFM photomicrigraphs.

Fig. 6 . Particle size distribution patterns.

Table A5 . Particle size distribution.

			JCSS1101b	JCSS1301	JCSS2101	J	CSS3101	
			kaolinite	dickite	pyrophyllite	moi	ntmorillonite	
						10 [*]	30 [*]	60^*
NIMS	Aq.	mean diameter	9.924	6.533	3.457	0.881	0.362	0.02
		modal diameter	9.993	9.993	4.380	1.562	1.562	0.02
		s.d.	0.358	0.406	0.672	0.574	0.740	0.12
		25% diameter	6.917	3.658	2.183	0.655	0.066	0.02
		median diameter	10.806	7.521	4.516	1.312	0.712	0.02
		75% diameter	17.345	12.821	9.508	2.113	1.595	0.03
	Et	mean diameter	1.607	0.640	4.131	9.325		
		modal diameter	2.900	0.058	8.131	28.014		
		s.d.	0.465	1.099	0.434	0.533		
		25% diameter	0.776	0.059	2.339	4.056		
		median diameter	1.615	0.219	4.636	11.331		
		75% diameter	3.126	8.175	8.661	25.414		
CU ³⁾	LSD	mean diameter	4.99	7.42	6.59	1.22		
		modal diameter	0.43	7.13	4.74	1.36		
		25% diameter	0.59	2.82	2.92	0.57		
		median diameter	1.90	5.72	5.20	1.00		
		75% diameter	7.46	10.36	9.31	1.67		
		surface area	6.13	2.00	1.74	7.49		
	CGF	mean diameter	5.25	8.31	7.15	0.46		
		modal diameter	1.20	6.75	3.12	0.24		
		25% diameter	0.55	2.74	2.16	0.14		
		median diameter	1.35	5.36	4.23	0.29		
		75% diameter	6.58	10.77	8.47	0.63		
		surface area	4.78	1.50	1.75	24.32		
NIRIN ⁵⁾	LA910	median diameter	14.7	8.1	6.5	2.0		
	M-TRAC	median diameter	1.9	7.0	5.9	1.1		
	LS230	median diameter	1.4	6.6	5.9	1.2		
	M-SCAN	median diameter	4.6	6.6	4.8			
	BIXDC	median diameter	8.4	4.7	5.9			
	SACP3L	median diameter	7.3	8.0	6.7			
	CMII	median diameter	1.6	5.6	4.3	0.78		
		Density	2.59	2.65	2.82	2.38		
		Vel.D.Calc.	1.2	8.4	5.9	0.34		

*Duration for the dispersion treatment with ultrasonic wave Aq.: Dispersion in water

Et: Dispersion in ethanol

LSD: laser di raction.scattering method CGF centrifugation method

Table A5 . (continued)

			JCSS3102	JCSS3501	JCSS5101	JCSS5102
			montmorillonite	saponite	sericite	sericite
NIMS	Aq.	mean diameter	3.311	0.033	9.70	4.82
		modal diameter	2.360	0.031	9.99	8.13
		s.d.	0.495	0.178	0.32	0.41
		25% diameter	1.371	0.026	6.13	2.95
		median diameter	3.115	0.034	10.34	5.46
		75% diameter	8.697	0.045	16.96	9.03
	Et	mean diameter	7.912	21.493	11.31	10.17
		modal diameter	9.993	34.429	9.99	9.99
		s.d.	0.428	0.312	0.38	0.30
		25% diameter	4.539	14.143	7.18	6.93
		median diameter	9.662	24.640	12.37	10.59
		75% diameter	16.659	36.272	21.11	16.34
CU ³⁾	LSD	mean diameter			16.14	
		modal diameter			14.98	
		25% diameter			6.84	
		median diameter			13.42	
		75% diameter			22.69	
		surface area			0.90	
	CGF	mean diameter			10.95	
		modal diameter			12.77	
		25% diameter			3.13	
		median diameter			8.12	
		75% diameter			16.11	
		surface area			1.78	
NIRIN ⁵⁾	LA910	median diameter	7.3	34.1	17.5	10.5
	M-TRAC	median diameter	11.1	26.1	16.2	8.2
	LS230	median diameter	8.1	0.1	13.3	6.9
	M-SCAN	median diameter			7.8	2.0
	BIXDC	median diameter	15.8		6.6	2.4
	SACP3L	median diameter			9.0	1.6
	CMII	median diameter	11.7	0.76	8.0	3.4
		Density	2.38	2.50	2.83	2.84
		Vel.D.Calc.	15.5		12.3	4.3

^{*}Duration for the dispersion treatment with ultrasonic wave

Aq.: Dispersion in water Et: Dispersion in ethanol

LSD: laser di raction.scattering method

CGF centrifugation method

Table A6 . Zeta electrokinetic potential. -61.6

JCSS1301	01	JCSS210	2101	JCSS3101	3101	JCSS3102	3102	JCSS320	33501	JCSS210	35101	JCSS2102	5102
Dickite	ď)	pyrophyllite	nyllite	Montmorillonite	rillonite	Montmorillonite	rillonite	Sapo	Saponite	Sericite	cite	Sericite, cleaved	cleaved
ᆸ	pH(25°C)	ZP(mV)	pH(25°C)	ZP(mV)	pH(25°C)	ZP(mV)	pH(25°C)	ZP(mV)	pH(25°C)	ZP(mV)	pH(25°C)	ZP(mV)	pH(25°C)
-8.78	4.85	-36.2	5.37	-44.9	6.79	-42.9	6.43	-47.5	7.54	-23.4	6.32	-29.3	7.43
	4.43	-30.8	4.87	-47.2	6.41	-39.7	6.07	-43.0	6.85	-22.0	5.72	-21.3	7.08
_	3.99	-23.8	4.53	-44.1	6.01	-41.2	5.69	-42.9	6.52	-21.4	5.32	-21.9	6.57
Ψ.	3.47	-19.5	4.06	-43.4	5.55	-37.6	4.96	-38.2	6.24	-21.3	5.02	-21.3	6.03
_	3.10	-11.6	3.51	-41.7	4.94	-40.0	4.48	-39.6	5.63	-29.2	4.43	-22.4	5.51
	5.41	-8.19	3.14	-40.2	4.55	-37.1	4.07	-34.6	5.07	-25.7	4.01	-21.2	5.15
	5.88	-7.83	3.16	-38.1	4.00	-35.8	3.59	-33.4	4.69	-29.5	3.52	-23.1	4.66
	6.30	-1.57	2.81	-36.8	3.48	-33.5	3.09	-24.9	4.22	-33.0	3.02	-32.4	4.20
	7.09	1.97	2.32	-38.3	2.98	-31.1	2.60	-26.8	3.75	-27.5	2.53	-32.4	3.66
	8.16	1.65	2.12	-38.7	2.48	-29.1	2.13	-23.9	3.25	-19.9	2.20	-29.2	3.14
	7.82	-31.8	5.21	-32.0	2.16	-27.5	2.06	-22.3	2.75	-20.9	6.73	-26.0	2.64
	8.86	-40.6	2.60	-44.8	6.45	-43.9	6.23	-17.3	2.28	-25.5	7.28	-22.4	2.21
	8.82	-44.4	6.10	-40.3	6.72	-40.7	7.25	-15.7	2.16	-29.9	8.70	-24.8	6.70
	9.29	-49.4	6.52	-42.3	8.09	-39.7	7.81	-42.3	8.07	-30.1	8.30	-25.5	7.06
	9.84	-54.2	7.12	-43.8	7.77	-39.1	7.54	-38.6	8.45	-28.8	8.86	-28.4	7.98
-59.6	10.3	-51.2	8.58	-42.4	9.04	-38.9	60.6	-40.7	8.73	-36.6	9.20	-27.9	8.09
	10.9	-51.2	8.27	-42.0	8.82	-38.2	8.88	-40.0	9.18	-43.4	9.82	-27.8	8.87
		-59.1	8.71	-41.5	9.45	-38.4	9.08	-39.2	9.55	-44.7	10.4	-35.1	9.02
		-52.0	9.01	-45.0	9.92	-40.3	9.63	-46.5	10.1	-48.9	11.0	-35.0	9.53
		-58.0	9.49	-41.6	10.5	-36.9	10.1	-35.2	10.6			-44.8	10.1
		8.09-	10.0	-40.5	11.1	-37.9	10.7	-33.6	11.1			-54.2	10.7
		-68.1	10.7			-37.0	11.1					-58.6	11.2
		-61.6	11.1										

Appendix 1 Table 4 . BET specific surface area. (from p.161)

Sample		$SSA (m^2/g)$
JCSS1101b	Kaolinite	14.82
JCSS1301	Dickite	3.69
JCSS2101	Pyrophyllite	4.63
JCSS3101	Montmorillonite	7.08
JCSS3102	Montmorillonite	27.35
JCSS3501	Saponite	104.79
JCSS5101	Sericite	4.60
JCSS5102	Sericite, cleaved	10.21

 $\label{eq:Appendix 2} \mbox{Abbreviations of the Organizations in Tables and Figs}$

AISTG	National Institute of Advanced Industrial Science and Technology
	(Institute for Geo-Resources and Environment)
AISTS	National Institute of Advanced Industrial Science and Technology
	(Materials Research Institute for Sustainable Development)
CU	Chiba University
HU	Hokkaido University
JIRCAS	Japan International Research Center for Agricultural Sciences
KSU	Kyushu Sangyo University
KU	Kyushu University
NIMS	National Institute for Materials Science
NIRIN	National Industrial Research Institute of Nagoya
NMNS	National Museum of Nature and Science
OUS	Okayama University of Science
UT	The University of Tokyo